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Summary

Turbulentwall-boundedcomplexflows arecommonlyencounteredin engineeringpractice

andareof considerableinterestsin a varietyof industrialapplications. The presenceof a wall

significantly affects turbulencecharacteristics.In addition to the wall effects, turbulent wall-

bounded flows becomemore complicated by the presenceof additional body forces (e.g.

centrifugal force and Coriolis force) and complexgeometry. Most near-wall Reynoldsstress

models are developed from a high-Reynolds-numbermodel which assumesturbulence is

homogenous(or quasi-homogenous).Near-wall modifications are proposedto include wall

effectsin near-wallregions. In thisprocess,wall normalsareintroduced.Goodpredictionscould

beobtainedby Reynoldsstressmodelswith wall normals. However,ambiguityariseswhenthe

modelsareappliedin flows withmultiplewalls.

Manymodelshavebeenproposedto modelturbulentflows. Among them, Reynolds stress

models, in which turbulent stresses are obtained by solving the Reynolds stress transport

equations, have been proved to be the most successful ones. To apply the Reynolds stress models

to wall-bounded flows, near-wall corrections accounting for the wall effects are needed, and the

resulting models are called near-wall Reynolds stress models. In most of the existing near-wall

models, the near-wall corrections invoke wall normals. These wall-dependent near-wall models

are difficult to implement for turbulent flows with complex geometry and may give inaccurate

predictions due to the ambiguity of wall normals at comers connecting multiple walls.

The objective of this study is to develop a more general and flexible near-wall Reynolds

stress model without using any wall-dependent variable for wall-bounded turbulent flows. With

the aid of near-wall asymptotic analysis and results of direct numerical simulation, a new near-wall

Reynolds stress model (NNWRS) is formulated based on Speziale et al.'s high-Reynolds-stress

model with wall-independent near-wall corrections. Moreover, only one damping function is used

for flows with a wide range of Reynolds numbers to ensure that the near-wall modifications

diminish away from the walls.
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Various simple and complex turbulent wall-bounded flows are used to validate the NNWRS

model. Model predictions agree reasonably well with available data from experiments, direct

numerical simulation, or large eddy simulation. Complex flow features caused by the centrifugal

force and Coriolis force as in swirling pipe flow, axially rotating pipe flow and channel flow with

spanwise rotation are essentially captured by the model. The model is able to reproduce

complicated flow phenomena induced by complex geometry, such as flow recirculation,

reattachment and boundary-layer redevelopment in backward-facing step flow and secondary flow

in three-dimensional square duct flow. In simple flows, including fully developed channel/pipe

flow, Couette flow and boundary-layer flow, the wall effects are dominant, and the NNWRS

model predicts less degree of turbulent anisotropy in the near-wall region compared with the wall-

dependent near-wall Reynolds stress model (NWRS) developed by So et al.. However, in

complex flows where other effects become more important, the NNWRS model performs almost

as well as the NWRS model, and the advantages of the wall-independent model become more

evident. The comparison of the predictions given by the two models also rectifies the

misconception that the overshooting of skin friction coefficient in backward-facing step flow

prevalent in those near-wall models with wall normals is caused by the use of wall normals.



1 INTRODUCTION

1.1 Background

Turbulence closure modeling to solve the mean-averaged Navier-Stokes equations has been

pursued for nearly a century. In the last several decades, with the great advances in computer

science, numerous turbulence models have been developed to simulate and predict more and more

complex turbulent flows. In most engineering problems, flow fields are bounded by walls. The

presence of a wall affects significantly the turbulence characteristics: it reduces the length scale of

the momentum fluctuations and increases the dissipation rate; it reflects the pressure fluctuation,

thereby inhibiting the transfer of turbulence energy into fluctuations normal to the wall; it enforces

a no-slip boundary condition, thus ensuring that within a wall-adjacent sublayer, however thin,

turbulent stress is negligible and viscous effect on transport processes becomes vitally important

(Launder 1989).

In general, there are two types of turbulence models: eddy-viscosity models and second-

order closure models (Reynolds stress models). In the eddy-viscosity models, the Reynolds stress

tensor is assumed to be the product of an eddy viscosity and the mean strain-rate tensor. In the

second-order closure models, turbulent Reynolds stresses are obtained by solving the Reynolds

stress transport equations and no relation is presumed between the Reynolds stresses and the mean

strain rates. As a result, the second-order closure models are more general and can be used to

simulate turbulence anisotropy and the turbulent stress redistribution process in the near-wall

region. Furthermore, other important factors such as streamline curvature, centrifugal and Coriolis

forces could be properly accounted for in the Reynolds stress models, whereas they are rather

difficult to be included in the eddy-viscosity models.

Practically all turbulence closure models invoke the large Reynolds number assumption, thus

allowing the viscous effect to be neglected as a first approximation. Consequently, the high-

Reynolds-number models cannot be applied to the near-wall region where viscous effect is

dominant. To remedy this drawback, wall-functions have been used to bridge the gap between the



wall and the location beyond which the high-Reynolds-number models are applicable. The wall-

functions are derived under the assumptions of equilibrium turbulence and constant shear stress

near a wall, which are less likely to be valid for complex turbulent shear flows. Therefore, many

attempts have been made to develop near-wall second-order closure models.

As a wall is approached, the local Reynolds number decreases and the intensity of the

anisotropy of the turbulence field increases due to the reflection of the fluctuating pressure by the

wall (Kim 1989). This effect is commonly known as wall blocking (wall-reflection or pressure-

echo) effects. Although the influence of the viscous effect and wall blocking effect on the turbulent

motion are very different by nature, these effects have been frequently modeled together in near-

wall turbulence modeling. All the existing near-wall Reynolds-stress models are developed based

on the high-Reynolds-number models. To account for wall effects, in principle, near-wall

modifications for the turbulent diffusion, velocity-pressure-gradient correlation, and dissipation

rate tensor are needed so that these terms have the correct asymptotic behavior near the wall.

Asymptotic analysis shows that the turbulent diffusion term is three orders of magnitude smaller

than the velocity-pressure-gradient correlation and the dissipation rate tensor in the near-wall

region. Therefore, no near-wall modification is actually required for the turbulent diffusion term.

On the other hand, the velocity-pressure-gradient correlation and dissipation rate tensor are order

one quantities in the near-wall region, and near-wall modifications for these terms are necessary

for the models to be applicable in the near-wall region. To ensure that the near-wall modifications

diminish away from the wall, a damping function analogous to that proposed by Van Driest (1956)

is introduced so that the high-Reynolds-number models are recovered in the region far away from

the wall.

The velocity-pressure-gradient correlation and dissipation rate tensor play crucial roles in

near-wall turbulence and represent different physical processes. The velocity-pressure-gradient

correlation is usually partitioned into a pressure-strain part and a pressure diffusion part. Few

models have explicitly considered the pressure diffusion effect (e.g. Lumley 1978).



Pressurediffusion is assumedto beeither includedinto the modelingof the turbulentdiffusion

term,or insignificant in near-wallturbulenceasit is treatedwhenthe Reynoldsnumberis large.

On the otherhand, the contribution of the pressure-straincorrelation is significant becauseit

redistributesenergyamongdifferentturbulentstresscomponents.Thepressure-straincorrelation

is a linearfunctionof thepressurefluctuation,andaccordingto thestructureof thesolutionto the

Poissonequationfor the pressurefluctuation,it consistsof a 'return' term,a 'rapid' term anda

Stokestermrepresentingthepressurereflectioncausedby thewall (Mansouret al. 1988). Dueto

thedifficulty to includetheStokespartin themodelif local homogeneousturbulenceis assumed,

theStokesterm is neglectedin mostof thehigh-Reynolds-numbermodels(e.g. Launderet al.

1975).Whenthesemodelsareextendedto thenear-wallregion,anadditionalterm proposedto

simulatethe Stokesterm is addedback to the pressure-straincorrelation (Prud'hommeand

Elghobashi1983;Kebedeet al. 1984;Shima 1988;Shih andMansour1990;Lai andSo 1990).

Anotherapproachis to modify thecoefficientsof thereturnandrapidtermstojustify theneglectof

theStokesterm (LaunderandShima 1989). In somemodels,theStokesterm is absorbedinto

either the return part or the rapid part (Spezialeet al. 1991;Launder and Tselepidakis1993;

LaunderandLi 1994). To ensurethatthenear-wallcorrectionsdecayexponentiallyawayfrom

thewall, a functiondependingonthewall normaldistanceisusuallyintroduced,andtheresulting

modelsareno longercoordinate-frameinvariant.

The dissipation rate tensor eij in the Reynolds-stressequation is formulated as the

combinationof an isotropic solenoidalpart and ananisotropicpart accordingto Hanjalic and

Launder(1976). The isotropicpart isobtainedby solvingatransportequationfor thedissipation

rate e of the kinetic energy. Hanjalic and Launder (1976) proposedthe first e-equation

compatible with their Reynolds-stress model. In spite of its oversimplified form compared with

the exact governing equation for dissipation rate, it performs reasonably well and becomes a

prototype for later modifications. Modifications have been made mainly to reproduce the near-

wall behavior of dissipation rate predicted by direct numerical simulation: a maximum value of e



is expected to occur at the wall. To reproduce such behavior, near-wall corrections are introduced

to the dissipation rate equation and wall dependent variables (wall normals) are used in damping

functions (Shima 1988) or transformed dissipation terms (Lai and So 1990). The anisotropic

correction part is constructed to satisfy the following two requirements: (i) the contraction of the

dissipation rate tensor should be equal to two times the dissipation rate of the kinetic energy, i.e.

Ysii = 2e; (ii) the components of the dissipation rate tensor should satisfy the kinematic

constraints proposed by Launder and Reynolds (1983). Several models have been proposed to

improve the dissipation rate tensor in the near-wall region (e.g. Prud'homme and Elghobashi 1983;

Kebede et al. 1984; So and Yoo 1986; Lai and So 1990). Among them, Lai and So's (1990)

model satisfies the kinematic constraints and contraction requirement with the introduction of the

wall unit vectors. Most recently, Shima (1995) proposed a three-term dissipation rate model. This

model also satisfies both requirements but eliminates all wall normal unit vectors.

In view of the above discussion, it can be concluded that most of the existing near-wall

Reynolds-stress models explicitly invoke wall-dependent variables such as wall normal unit vector

and wall normal distance to account for the viscous and wall effects. The influence of each wall in

this wall-dependent model is also assumed to act independently. For turbulence flows with

complex geometry, which are commonly encountered in most engineering problems, the use of

wall normals at corners connecting multiple walls becomes ambiguous. Therefore, in this

situation, these models are difficult to implement and may introduce inaccuracy in the prediction of

complex turbulent flow field. The present study is aimed to improve the existing near-wall

Reynolds-stress models for complex flows caused by complex geometry, as well as streamline

curvature and additional body forces such as centrifugal and Coriolis forces in flows with swirl

and rotation.

1.2 Present Objectives

The present research is to develop a near-wall Reynolds-stress model for complex turbulent

flows without introducing any wall-dependent variables (wall normals). Several near-wall second-
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orderclosuremodelshavebeenproposedat Arizona StateUniversity (ASU) in the lastdecade.

TheyareSoandYoo (1987),Lai andSo(1990),Soet al. (1991)andSo et al. (1994). With the

aid of asymptoticanalysis,thenear-wallmodificationsin thesemodelsweredevelopedbasedon

thehigh-Reynolds-numbermodelof Launderet al. (1975)exceptthatof Soet al's (1994),which

wasbasedon the modelof Spezialeet al. (1991). This latestmodel (hereafterwe will call it

NWRSmodel)hasbeenvalidatedagainstvariousapplicationsrangingfrom incompressiblefully

developedchannelflow to high Machnumbercompressibleboundary-layerflow in a wide range

of Reynoldsnumber. Although thesemodelsdevelopedby theASU group areasymptotically

consistentto acertainextentin thenear-wallregion,all of themaredependentonwall variablesin

onewayor another. The presentstudy is part of the on-goingnear-wallsecond-orderclosure

modeldevelopmentproject.An attemptto developanear-wallReynolds-stressmodelwithoutwall

dependencehasbeencarriedoutby LaunderandLi (1994)withpartialsuccess.Thewall normals

wereremovedfrom thepressure-straincorrelationin their Reynolds-stressmodel,but remainin

thedissipationratetensor.Therefore,themodeldevelopedin thisstudyis expectedto be thefirst

near-wallReynolds-stressmodelwith nowall dependence.Thechallengeof near-wallmodeling

liesonthelackof thoroughunderstandingof wall effectsonturbulence.A near-wallsecond-order

closuremodel without wall-dependentvariablesposesmoredifficulties becauseof the limited

numberof solvablevariablesandsuitableformulations.Guidedby theresultsof directnumerical

simulation,wewill developanasymptoticallycorrectnear-wallmodelwithoutwall normalsin this

study. The new model is a modificationof NWRS which canaccommodateflow complexities

suchasstreamlinecurvatureandadditionalbody forcesrelatedto fluid rotation. The newmodel,

designatedasNNWRS, is expectedto performaswell asthewall-dependentNWRS model in a

widerangeof complexflow conditions.

1.3 Report Outline

In Section2, a new near-wallReynolds-stress(NNWRS) model without wall normals is

developedbasedon thepressure-strainmodelof Spezialeet al. (1991). Asymptoticanalysisand



resultsfrom direct numericalsimulationareusedto guide the near-wall modificationsfor the

pressure-straincorrelation,dissipationratetensor,anddissipationrateequation. Forcomparison,

theformulationfor thenear-wallReynoldsstress(NWRS)modelwith wall normalsproposedby

Soet al. (1994) is also presented,andits predictionswill be comparedwith thosegivenby the

NNWRS model in Sections3, 4 and 5, togetherwith availabledata from experiments,direct

numericalsimulationandlargeeddysimulation.

In Section3, simple internalandexternalflows with awiderangeof Reynoldsnumbersare

first usedto validatethenewproposedmodel. Theseflows includefully-developedchannel/pipe

flow, Couetteflow, andboundary-layerflow with zeropressuregradient. In additionto assessing

its performanceon the meanand turbulencefields, the model'sability to replicateReynolds

numbereffectson themeanflow andsecond-orderstatisticsisalsoexamined.

In Section4, theNNWRSmodelis appliedto swirling pipeflow, axially rotatingpipeflow,

andachannelflow with spanwiserotationtodemonstrateits ability to reproducecomplicatedflow

phenomenacausedby streamlinecurvature,centrifugalforce,andCoriolisforcein a widerangeof

Reynoldsnumbers,swirl numbers,androtationnumbers.

In Section5, two flows with multiple walls, a two-dimensionalbackward-facingstepflow

anda three-dimensionalsquareduct flow, areusedto test the model'sability to replicateflow

phenomenaresulting from complexgeometry, suchas flow recirculation, reattachment,and

boundary-layerredevelopmentin backward-facingstepflow, andthe secondaryflow inducedby

turbulencein squareduct flow. The advantagesof theNNWRS model for flows with complex

geometryaredemonstrated.

Section6 summarizestheperformanceof the proposednear-wallReynolds-stressmodel

withoutwall normalsandpresentstheconclusionsdrawn.



2. NEAR-WALL REYNOLDS-STRESS MODELING

2.1 Mean Flow Equations

The present study considers turbulent flows of a viscous, incompressible fluid. The fluid

motion with the presence of rotation is described by the Navier-Stokes equations, which can be

written in Cartesian form or notation as:

°_fi-------c_= 0 , (2-1)
3xi

32fii
o3fii + fj cgf i _ 10_ _-v-- - 2eij_f2jf k , (2-2)
Dt 3xj p 3x i 3xjDxj

where fig is the instantaneous velocity vector, b is the modified pressure including the centrifugal

force potential, _j is the angular velocity, eijk is the permutation tensor, and p and o are the fluid

density and viscosity, respectively. Equations (2-1) and (2-2) express conservation of mass and

momentum per unit mass, respectively.

The N-S equations (1) and (2) are fundamental governing equations and can be applied to

both laminar and turbulent flows. With specified boundary and initial conditions, in principle, (I)

and (2) can be solved numerically. However, for turbulent flows, the resolution of the small scale

turbulent fluctuations requires very fine grids; as a result, direct numerical simulations (DNS) of

turbulent flows at high Reynolds number are extremely difficult, if not impossible. An alternative

approach is to study the mean flow field with the consideration of the influence of turbulence. The

mean flow field can be obtained through time, spatial or ensemble averaging. Time averaging has

been widely used in engineering since stationary turbulent flows are most frequently encountered.

This method is also adopted in this study. By time averaging, the velocity and pressure fields are

decomposed into a mean and a fluctuating part:

fi = Ui + ui , P = P + P ' (2-3)

where capital letters denote the time-averaged mean quantities and small case symbols represent

the fluctuating quantities.



Substituting (2-3) into (2-1) and (2-2) and taking the time averagingof the resulting

equations,weobtainthegoverningequationsfor themeanflow field, or

°IU-----A= 0 , (2-4)
3xi

6_U i _ 1 c_P 02Ui OUiUj

Uj Oxj p Oxi + o c)xjv_xj Oxj - 2eijk_jU_' (2-5)

Note that the effect of turbulence on the mean flow is represented by the Reynolds stress term uiu j

(i.e. correlations between different fluctuating velocity components) on the right hand side of (2-

5). Equations (2-4) and (2-5) are called the Reynolds equations for the mean flow field.

To solve the Reynolds equations, one must relate the Reynolds stress term to the mean

velocity to close the equations. In the following section we derive the transport equations for the

Reynolds stresses and for the dissipation rate.

2.2 Time-Averaged Turbulence Transport Equations

The transport equations for the Reynolds stresses and the dissipation rate can be derived from

equations (2-1) and (2-2). Defining a Navier-Stokes operator

3_ i 3fi i

N(fii) = _ + uj --3xj "k

1 _1_ O2t_ i

u + 2eij_ajfi k , (2-6)
pax i OxjOxj

and carrying out the following time averaging

uiN(fi i)+ujN(fi i) = 0 , (2-7)

we obtain the Reynolds-stress transport equations:

OUiUj _ 0 OU_" 1 C_UiUjUk

U_ Ox_ 3x_ v _?x_ ) Ox_ + _-ujuk

+ _"__ZJ_

3ui 3uj
o +3x_

(2-8)
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The left-hand side is the convection term and the terms on the right-hand side of (2-8) are viscous

diffusion, turbulent diffusion, production due to mean velocity strain, production due to rotation,

pressure-strain correlation, pressure diffusion and viscous dissipation. Similarly, the equation for

the dissipation rate e, defined as

03Ui 03///i

e = v 03x_ 03xk ' (2-9a)

can be derived from

2l) 03ui 03 [N(ui)]=O , (2-9b)
03xj03xj

where N(ui)is the Navier-Stokes operator defined in (2-6) with fi/_ u i, _ _ p. After tedious

algebraic manipulation, the following equation for e is obtained

03e 03

gk 03xk- 03Xk_, 03x_) C_XmOXm) 2 V

03uk 03uk OU i __ _..--_ui] 032Ui 2v03ui 03ui 3u k

OxjOxj  LU Wjox  x;Ox OXmOXo
_2l) 03 (03p Ouj 032Ui 032Ui (2-10)

The terms on the right-hand side of (2-10) are generally regarded as viscous diffusion, turbulent

diffusion, mixed production, production by mean velocity gradient, gradient production,

turbulence production, pressure diffusion and turbulent destruction of the dissipation.

To facilitate the discussions on each term in the Reynolds-stress and dissipation rate transport

equations, we recast (2-8) and (2-10) in the following symbolic forms:

Cij = D_j + D.yj + Pij + Rij + Hij - e(i , (2-11)

Ce = D v + D r + Ple + Pz + P3 + P4 + Dpe _ ?, , (2-12)

respectively, where each symbol represents each position-corresponding term on the right-hand

side of the respective full equations. Note that in (2-11) the turbulent diffusion term is



the velocity-pressure-gradient correlation FI 6 consists of two parts:

l-[ij = 1-Iij + DiP

where

I-Io= p --+
[ OXj Oxi )

Oxk

(2-13a)

(2-13b)

(2-13c)

(2-13d)

and the dissipation rate tensor is written as

3u i Ouj
8 0 =2v

ax k axk
(2-13e)

All the right-hand side terms in (2-12) except

(2-14)

need modeling if the Reynolds equations for the mean flow field are to be closed.

2.3 High-Reynolds-Number

In this section, we discuss

Modeling

how the turbulent diffusion Di_, velocity-pressure-gradient

correlation l-I;. and dissipation rate tensoreij in (2-11) are modeled under the assumption of high

Reynolds number (the resulting models are called the high-Reynolds-number models). For high

Reynolds number flows, the viscous effect can be neglected. Irrespective of the analytical

arguments employed for modeling, all known high-Reynolds-number models use the Reynolds

stress gradients to express the turbulent diffusion term (some models also employ the gradient of

the turbulence scale or the gradient of the scale-supplying variable, such as the dissipation rate e).

Five formulations have been proposed for the turbulent diffusion term and they are given by Daly

10



andHarlow (1970), Shir (1973),Hanjalic andLaunder(1972),Mellor andHerring (1973)and

Lumley(1978). Theinvariantform of turbulentdiffusionbyHanjalicandLaunder(1972

1

is adopted for the present model development, where k = 1 / 2uiu i is the turbulence kinetic energy

and Cs is a constant. This formula is not only tensorily consistent with the exact expression but

also found to perform better in several types of turbulent flows.

Velocity-pressure-gradient correlation 196 is traditionally partitioned into a pressure-strain term

l-Iij and a pressure diffusion termDiP (2-13b). The contribution from Dif is usually neglected for

high-Reynolds-number flows or is argued to be included in turbulent diffusion model (2-15). In

either case, the velocity-pressure-gradient term I-I;. is considered to be the same as the pressure-

strain term I-I/j in high-Reynolds-number modeling.

For incompressible flows, the pressure fluctuation is governed by the following Poisson

equation

1VZp = -20Ui OUj 0 2 (
o % axi ax,ax; (2-16)

with boundary condition

?p a2v

ay ay 2 ' (2-17)

where t_ is the velocity fluctuation in the wall normal direction (y direction). The Poisson

equation and its boundary condition (2-17) are linear with respect to the fluctuating pressure p.

Therefore, its solution can be splitted into three parts, a 'return' part, a 'rapid' part and a 'Stokes'

part (Mansour et al. 1988). The return pressure, Pl, is defined as the solution of the following

problem

a 2

,.,- - (2-18a)

with the boundary condition at the wall given by

11



0P__L= 0

0y

The rapid pressure, P2, is defined as the solution to

OUi Ouj
1V2p2 = -2
p Oxj Ox i '

with the boundary condition at the wall given by

OP2=o
Oy

Finally, the Stokes pressure, Ps, is defined as the solution to

(2-18b)

(2-19a)

(2-19b)

1V2ps =0 , (2-20a)
P

with the boundary condition at the walls specified as

03Ps __ O_2V

0322 (2-20b)

This split resolves the question of whether to add the inhomogeneous boundary condition to the

return part of the pressure or to the rapid part. It does not affect the wall effect on the pressure

fluctuations. The pressure-strain term is linear in p (2-13c) and accordingly the Stokes pressure-

strain statistics can be added to either the rapid pressure-strain term or the return pressure-strain

term without affecting the wall effect on the pressure-strain correlation. However, the Stokes

pressure-strain term (representing the wall effect) is neglected in most models due to the

mathematical difficulty and the lack of understanding of the wall effect on turbulent flow field.

Launder et al.'s (1975) pressure-strain correlation (hereafter denoted as the LRR model) has been

widely accepted for most Reynolds-stress models because of its good performance. In the LRR

model, a wall reflection term was introduced to simulate the Stokes pressure-strain term and to

compensate for the stress anisotropy due to the presence of the wall. The inclusion of the wall

reflection term has been regarded as indispensable to simulate the wall effects. However, it causes

a major drawback since this term involves the distance from the wall and is not coordinate frame

12



invariant. On theotherhand,theSSGmodel (Spezialeet al. 1991)incorporatedtheStokesterm

into thereturnandrapidparts,andnoadditionalwall reflectiontermis proposed.

The recenttrend for pressure-straincorrelationmodelingis to includeadditionalnonlinear

termsto theconventionallinearterms.Theinclusionof nonlineartermsbringsmoreflexibility to

satisfycertainkinematicconstraints(e.g.realizability). Amongthe nonlinearmodels,theSSG

model retainsthe linearparts in the LRR model, but with somecoefficients dependingon the

turbulentstressinvariantsandturbulenceproduction(hence,it is a quasi-linearmodel). Other

modelscontain the quadraticand cubic terms in the rapid part and therefore aremuch more

complicatedto usein engineeringapplications(Choi andLumley 1984;Shih andLumley 1985;

CraftandLaunder1991;LaunderandTselepidikis1993).

With appropriaterearrangementandtransformation(AppendixA), the SSGmodelcanbe

rewrittenin thefollowing form:

l'-Iij = -( C1E + C119)bij + C28( bikbkj - l II_ij ) + C5k( bjmeik m + bimejk m )_2 k

2 C_l_lll2)kSo ' (2-21)-al(PiJ - Pc_iJ)-l_l(Dij -3/3_50)- 2(7' + 2

where Cl, C 1 , C 2, C3 , C5, a l, fll and 71 are constant coefficients, and the expressions for

[o, bo ' I7, Pij, Dij and Sij are given in Appendix A. By rewriting the SSG model in this form, the

LRR model is readily recovered by setting C; = C2 = C_ = Cs = 0, and the meaning of each

individual term in (2-21) can be easily identified. The first two terms on the right-hand side of (2-

21) (C_ and C2 terms) are the nonlinear return part, the third term (C 5 term) is to account for

rotation effect, and the rest ( a l, /31 and 7'1 terms) are similar to the rapid part in the LRR model.

The SSG model gives better predictions than the LRR model does for flows with streamline

curvature and rotation (Speziale et al. 1992). In view of the above discussion, the SSG model is

selected as the base for the development of near-wall second-order closure models in this study.

In high-Reynolds-number turbulence, the dissipation rate tensor is assumed to be isotropic

and the form proposed by Kolmogorov (1941) is often adopted, which is

13



2

e0 --  e60 ,

where the isotropic dissipation rate

equation,

3e

Uk c)xk

(2-22)

s is obtained by solving the following modeled transport

- ° c k-. ,
o3xk _, ax k) £ U'Uk_x i + Celf l k k

and Ce, Cel and Ce2 are constant coefficients, fl and f2 are the damping functions.

2.4

(2-23)

Near-Wall Reynolds-Stress Modeling Based on the SSG Model

The presence of a wall affects significantly the turbulence behaviors in many aspects. Near-

wall turbulence modeling is to simulate the wall effects (including viscous and blocking effects) on

turbulent flows. In this section, the high-Reynolds-number models discussed in the previous

section are extended to the near-wall region by incorporating asymptotically correct near-wall terms

to the model of the pressure-strain correlation, the dissipation rate transport equation and the model

of the dissipation rate tensor. The derived near-wall modifications are ensured to vanish away

from the wall through the use of damping functions. Two near-wall Reynolds-stress models will

be presented in this section, one is wall-dependent (hereafter referred to as NWRS), the other is

wall-independent (hereafter referred to as New NWRS or NNWRS). The wall-dependent model

has been reported in So et ai.(1994), in which the author is one of the co-authors.

Following Lai and So (1991), we expand the fluctuating velocity components, which satisfy

the no-slip boundary conditions at the wall, into Taylor series in the near-wall region as

u = alY+ a2Y 2 + a3Y 3 + .... ,

v = bly + b2y 2 + b3y 3 + .....

w = cly+c2y 2 +

where u i = (u, v, w),

the stream direction

random functions of

(2-24a)

(2-24b)

c3Y 3 + ..... (2-24c)

x i = (x,y,z), and the y-axis is taken to be normal to the wall, the x-axis is in

and the z-axis is normal to the (x, y)-plane. The coefficients ai, bi, c i are

time, x, and z, but not y. For incompressible flows, b 1 = 0 is required to

14



satisfy the continuity equation. The near-wall behavior of each term in the Reynolds stress

equation (2-11) can therefore be analyzed by the substitution of (2-24), except the behavior of the

velocity-pressure-gradient term, which can be obtained by rearranging (2-11) as

H*ij = Cij - Diy - Dij - Pij - Rij + 6.0. Table 2.1 shows the near-wall behavior of each term in (2-

11). Note that the Rij term has a varying near-wall behavior depending on the orientation of the

rotating axis, but its lowest order is O(y2). Therefore, this term does not contribute to H_. in

Table 2.1, which only shows terms to O(y) explicitly.

From Table 2.1, one can see that 6.0, Dij and FI_j are the leading order terms in the near-

wall region and 6.0 - FI_ is in balance with Di_f up to O(y). To extend the high-Reynolds-number

models to the near-wall region, appropriate expressions for FI_ and e 0 are required so that they

have the correct asymptotic behavior (Table 2.1) in the near-wall region. Furthermore, according

to Launder and Reynolds (1983), in the vicinity of the wall, the behavior of 6./j / uiu j has to satisfy

the following kinematic relations

6.11 / U 2 = 6.33 //,12 = E.13 ] UlU3 = 8 / k

6.12 / UlU 2 ----6.23 / u2u 3 = 26. / k

822 / u22 = 46. / k

(2-25a)

(2-25b)

(2-25c)

These kinematic constraints are highly anisotropic, and they further indicate the difficulty of near-

wall Reynolds-stress modeling, particularly for the 22 component. Another constraint for 6.ij is

that its high-Reynolds-number model plus whatever near-wall corrections proposed should

contract to 26..

A similar analysis carried out for (2-12) reveals that to O(y°), D_, DPe and y are the

leading-order terms near the wall. Traditionally, Dep is neglected in the ad hoc modeling of the 6.-

equation. The argument is that its effect can be accounted for in the model proposed for

p_ + p2 + p4 _ y in (2-12), i.e. the terms Celfl["6. / k-Cezf26. 2 / k in (2-23). This reasoning is

acceptable for high-Reynolds-number flows; but it is too restrictive for near-wall turbulence. The

negligence of DeP is tantamount to the neglect of the pressure diffusion effect in the 6.-equation,
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whichbecomesvery importantin the near-wall region. Since the dissipation rate e influences the

Reynolds stress UiU j behavior in the computations through the interactions between eij and uiuj,

the importance of having a consistent near-wall model for the G-equation cannot be over

emphasized. In view of this, near-wall modifications for the e-equation are necessary if proper

near-wall modeling of ttiU j is tO be accomplished.

Like other pressure-strain models invoking the high-Reynolds-number assumption, the SSG

model is not asymptotically correct in the near-wall region. TheO(y °) term in the SSG model

comes from the return term (Table 2.2) and is one order of magnitude larger than the exact term,

which should be O(y l) (Table 1.1). Therefore, near-wall corrections are needed for the SSG

model in order to make it applicable in the near-wall region. So are the dissipation rate tensor eij

(2-22) and the dissipation rate equation developed for the high-Reynolds-number flows (2-23). In

what follows, two near-wall Reynolds-stress models (NWRS and NNWRS) are presented in a

parallel manner to highlight the difference between them.

2.4.1 NWRS Model With the above guideline, the NWRS model based on the SSG model

was first developed by So et al. (1994). The pressure-strain correlation in the NWRS model can

be written as

1--[ij = --( C Ie + ClP)bij + C2E(bikbkj - 1 i.i(_ij) + C5k(bjmeik m + bimejk m )_-2k

_ _ + fw,lFlo + 1-Iij.-al(PiJ [9_SiJ)-_l(Dij P6ij)-2(Tl 2

The last two terms are the near-wall corrections to the high-Reynolds-number SSG model (cf (2-

2 f,,5_j) *- FI6ij ) + a*(Pij - + 2y kS(/ ,

26) to (2-21)). The I-I_ term,

I-lig = ( CIe + C1 P)bij - C2e(bikbkj
(2-27)

where a* and y are two new coefficients, is proposed to remove the O(y °) terms in the SSG

model (the C l and C 2 terms in Table 2.2) and compensate for the insufficient anisotropy as a wall

is approached. This term is multiplied by a damping function fw,l to ensure that the near-wall

correction diminishes away from the wall. The lip term, which is given by
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l
where n i = (0, 1, O) is the wall unit vector, is included to improve the model predictions for the

vv, uv and v--_ Reynolds-stress components in the near-wall region. In the course of validating

the NWRS model, two different expressions for the damping function fwA are needed to predict

correctly different types of flows with a wide range of Reynolds numbers. These expressions are

[ _Re,?l
Zw,,=expL-t,2-0-d)j , (2-29a)

F (ARe, fl31

fw,1 =exp/-|--7_. / / , (2-29b)

where Re t =k:/(re) is the local turbulent Reynolds number and

A = 1 - (9 / 2)(bijbij - 2bijbjtbki ) is the anisotropy invariant. The choice of either (2-29a) or (2-

29b) for the damping function depends on the flow Reynolds number and the type of flows

considered. For example, when the model is applied to channel flow with Re r = 395, where

Re T = urh / t) is the Reynolds number based on the friction velocity u_ and the channel half width

h, (2-29a) gives better results. On the other hand, when Re_ is reduced to 180, (2-29b) gives

better predictions. Overall, (2-29a) is suitable for most of the flows considered, except two cases

of very low-Reynolds-number channel and pipe flows. The values of two additional near-wall

constants a* and 7" in (2-27) are specified to be a* = -0.29 and 7* = 0.065 to give the best

predictions (compared with the DNS data of Kim et al. 1987 and Kim 1991) of the near-wall

turbulence behavior for fully-developed channel flow at Re r = 180 and 395.

A similar approach is used to derive the near-wall correction function ( for the e-equation

(2-23). The improved e-equation becomes

cge 0 (c?e'_ 0 F k De] e__p e_-- 1)--I + --IC s --UkU i -- + Gel - Ce2 + ( (2-30)
v_axk ax_ axe) ax_L = Ox, k -{ '

with
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e- -g2 Neg: (2-30a)(=fw,2 -L--£P+M k - k '

-g=e-2vk/ yZ , (2-30b)

g:=e- 21)(o_a/-k/0y) 2 , (2-30c)

where fw.2 = exp[-(Ret/40)2] is a damping function proposed to influence the decay of ( away

from the wall, and L, M, and N are model constants. Subsequent computations show that

L = 2.25, M = 0.5 and N = 0.57 should be used. The modified dissipation rates _ and _ are

introduced to ensure that the leading order terms in (2-30) have correct asymptotic behavior near a

wall.

The simple relation between the dissipation rate tensor e 6 and the dissipation rate e for

isotropic turbulence, (2-22), is no longer valid in the near-wall region. Further correction for (2-

22) is required to account for turbulence anisotropy caused by the presence of the wall. Here, the

relation given by Lai and So (1990), which satisfies the constraints (2-25) and contracts correctly

to 2 e, is adopted:

32e.(_il(1_ f w,1)+ f w,l e uiuj + uiukn_nj + UjUknkni + ninjukuln_:nl (2-31)6.ij
k 1 + 3UkUtnknt / 2k

This relation consists of the isotropic part and the anisotropic correction part. The damping

function fw,l is used to recover the Kolmogorov isotropic relation (2-22) at large Reynolds

number. The near-wall asymptotic behavior of e o given by (2-31) can be found in Table 2.3,

which shows that (2-31) is only asymptotically correct to O(y °) in the near-wall region. But each

component has the correct leading order asymptotic behavior.

2.4.2 NNWRS Model In the NWRS model presented in the previous section, all the near-

wall corrections invoke wall dependent variables, such as found in (2-28), (2-30) and (2-31). As a

result, the model is rather difficult to implement and may give incorrect predictions for flows with

complex geometry. In this section, we develop a new near-wall Reynolds-stress (NNWRS) model

with no wall normal dependence.
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The pressure-strain term in the NNWRS model is modeled similarly as that in the NWRS

model:

1-Iij = -( Cle + C_ [Z,)bij + Cze( bi_bkj _ 1 Fi_i j ) + C5k( bjmeik m + bime jk m )_-'_k

2 * w-al(PiJ - Pc_iJ)-_l(Dij --3/_6q)-z(Yl + C31-II/2)k-'J2S:: + fw,ll-Iij,
(2-32a)

where I-Ii_ is again proposed to remove the incorrect lowest order O(y°)terms in the SSG model

and compensate for the insufficient anisotropy in the near-wall region, which is given by

- + - - + - + , ,

and the damping function fw,l is used to make I-I/_ diminish in the high-Reynolds-number flow

region. The damping function is proposed to have the following form,

fw,1 = exp[-(Ret/150)21 ' (2-33)

by arguing that the near-wall modifications are due to the viscous effect and are needed when the

local turbulence Reynolds number Re t is less than 150. This damping function is used for all

types of fiows. The new constants in (2-32) are chosen to be _* = -0.36 and 'y* = 0.072 to give

good agreements with DNS data of fully developed channel flows at Re _ = 180 and 395 (Kim et

al. 1987; Kim 1991). Note that the wall-dependent near-wall correction term l-I,_ (2-28) for the

pressure-strain term in the NWRS model is not included in I-Ii) in the NNWRS model (cf (2-32)

with (2-26)).

In the NWRS model, the modified dissipation rate _ and ,_ in the e-equation depend on

local normal wall distance y (2-30). To remove the wall dependence in the e-equation requires a

complete re-examination of the derivation of the equation. Most recently, a new dissipation rate

equation without wall dependence has been proposed by So et al. (1997) for two-equation model

to account for wall effects. We re-examined the derivation of this equation thoroughly and decided

to adopt it with an additional anisotropic coefficient in the turbulent diffusion term as the e-

equation in the NNWRS model. The final form for the e-equation in the NNWRS model is
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03e_ 03I v 03e l + 03 k 03e) e e 2
E UtUk 03Xi k kUk Oxk Oxk \ OXk J -_xk (Ce -- . + Cel--[_ _ Cezfe --

+ Ce3 _--_Xk .) (2-34)

where fe =1- 0.22exp[-(Ret/6) 2] and fw,2 = exp[-(Ret/40) 2 ] are the damping functions, and

Ce = 0.12, (?el = 1.5, Ce2 = 1.9 and Ce3 = 2.95 are model coefficients.

Finally, the relation for the dissipation rate tensor given by Shima (1995) is adopted in the

NNWRS model, which is

2 _ijF.( 1 _ fw,1) + fw,le_j + F'ij ' (2-35a)
Eij = -_

where

W

eij _uiu j , (2-35b)

" 1[ O--O---( 03uiuJ2L03xk uiuj03k Ox_ -_xk 1eij = v--_xk ) (19 ) (2-35c)

The first term in (2-35a) is the isotropic part which recovers (2-22) when Reynolds number is

large, the second term is the anisotropic correction in the near-wall region, and the last term is an

additional near-wall correction which redistributes the dissipation rate among different Reynolds

stress components. It can be shown that e/j given by (2-35) contracts to 2 e and satisfies kinematic

constraints (2-25) except the 22 component. The near-wall behavior of this dissipation rate tensor

has been analyzed by applying (2-24) and is summarized in Table 2.3 in comparison with the

corresponding components in the NWRS model (2-31). Table 2.3 shows that the asymptotic

behavior of the dissipation rate tensor given by (2-35) matches the exact asymptotic behavior up to

O(yl), whereas the one given by (2-31) in the NWRS model only up to O(y°). The near-wall

variations of different dissipation rate components given by (2-31) and (2-35) are compared with

the DNS data (Kim et al. 1987), and the results are shown in Figs. 2.1a - 2.1d. In these figures,

+ 4
eij = veij /u r are the non-dimensional dissipation rate components, and y+ = yu r / 19 is the non-

20



dimensionalwall distance,where u r is the friction velocity . These figures show that for the

normal stresses, uu, vv, ww, the dissipation rate tensor relation in the NNWRS model gives

better agreement with the DNS data than that in the NWRS model, but for the shear stress uv,

both relations give about the same results.

An alternative proposal has been put forward by Cho et al. (1995), where the dissipation rate

tensor was assumed to be given by

eiJ = 2 608( 1 _ fw,1) + fw,lei_

with

w UmUn - -"

6ij = E + T Enm O(i

_mn = 2 V
OX m OX n

(2-36a)

UmUi - UmUj _im [ l+ 5 Epq UpUq
+-'-k --ejm +---k-- 2 e k '

(2-36b)

(2-36c)

The asymptotic behavior of each component of this dissipation rate tensor and the corresponding

overall behavior of the Reynolds-stress equations is given in Table 2.3 and 2.4 together with the

NWRS and NNWRS models, respectively. According to these tables, this model (2-36) is only

better than the NNWRS model in the 22 component. If (2-36) is used to replaced (2-35) in the

NNWRS model, the resultant calculations yield better predictions in the near-wall region for the

two channel flows considered. However, the results are not as good as those given by the NWRS

model (Figs. 2.1 and 2.2). The improvement shows the importance of the 22 component in wall-

bounded flows, thus the better performance of the NWRS model over the NNWRS model.

Essentially, there is no difference in the overall predictions of the channel flows (Figs 2.2a - 2.2d)

when (2-35) and (2-36) are used. Therefore, the dissipation rate tensor (2-35) is adopted in the

NNWRS model.

2.5 Concluding Remarks

In this section, we have presented two near-wall Reynolds-stress models, NWRS model and

NNWRS model. The first one involves wall-dependent variables and the second one does not.
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Thesenear-wallmodelsaredevelopedfrom thehigh-Reynolds-numbermodelby incorporatingthe

near-wallmodificationsinto theexpressionfor thepressure-straincorrelation,into therelationfor

thedissipationratetensorin theReynolds-stressequations,andinto the modeleddissipationrate

equation.Dampingfunctionsareusedto ensurethatthenear-wallmodificationswill notaffectthe

flow field in the region far away from the wall. The overall behaviorof the Reynolds-stress

equationin thenear-wallregionisdeterminedby e 6 - FI_. and is presented in Table 2.4 for both

NNWRS and NWRS models. It shows that the modeled Reynolds-stress equations in both

models match the exact equation to O(y°). For those Reynolds-stress components (the 11, 33

and 13) that are not correlated with the wall normal direction, they are better predicted by the

NNWRS model than by the NWRS model. In contrast, the NWRS model, with additional near-

wall correction term I-Ip (see (2-28)), gives better prediction for those components (22, 12 and

23) correlated with the wall normal direction. With no wall dependent variable in the model and

only one expression for the damping function used in the pressure-strain formula, the NNWRS

model is more general and flexible for flows with complex geometry than the NWRS model. The

complete set of modeled equations and constants used in both models are given in Appendix B.

The validations of the new developed near-wall Reynolds-stress model for different flow

conditions will be presented in the following sections.
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Table 2.1 Near-wall asymptotic behavior of each term in Reynolds stress transport equation.

ii

11

22

33

12

23

13

O(y 3)

O(y 5)

O(y 3)

O(y 4 )

O(y 4 )

O(y 3)

O(y 3 )

O(y 5 )

O(y 3 )

O(y 4 )

O(y 4 )

O(y 3 )

m

2va_ + 12vala2Y

+O(y 2)

12vb_y 2

+O(y 3 )

2vc_ + 12VClC2y

+O(y 2)

6Valb2y

+O(y 2 )

6vb2clY

+O(y 2)

6v(alc 2 +a2cl)Y

+O(y 2)

O(y 5 )

O(y 3 )

O(y 4 )

O(y 4 )

O(y 3)

2 va_ + 8 vala2Y

+ O(y 2 )

m

2 vc_ + 8 VClC2y

+ O(y 2 )

4 valb2y

+O(y )

4 vb2cly

+O(y 2)

2 valc 1

+4 v(alc 2 + a2c 1)y

+O(y 2)

-4 va Ia2Y

+O(y 2 )

-4 vb 2 _,2

+O(y 3)

-4 VClC2y

+O(y 2 )

-2 valb2Y

+O(y 2 )

-2 vb2Cly

+O(y 2 )

-2 v(alc 2 + a2c 1)y

+ O(y 2 )
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Table 2.3 Near-wall asymptotic behavior of each component in the dissipation rate tensor eij .

ii

11

22

33

12

23

13

eij (exact) NWRS NNWRS

2va 2 +4valazy 2va 2 +8valazY2 va 2 + 8 vala2y

4- O(y 2 )

8 vb_y"

+O(y)
m

2 vc 2 + 8 VClC2Y

4- 0(72 ) + O(y 2 )

7 v-_2y 2

+O(y 3)
m

2 vc 2 + 4 VClC2Y 2vc 2 + 8Vc---l_y

Cho et al. (1995)

2 va? + 4 vala2y

+ O(y 2)

8 vbf2y 2

+O(y 3 )

2vc 2 + 4vqc2Y

+O(y 2)

4 valb2y

+O(y 2)

4 vb2cy

+O(y 2)

2 valc 1

+4V(alc 2 + a2cl)Y

+ O(y 2 )

+O(y 2)

4 valb2y

+O(y 2)

4 vb2cy

+O(y 2)

2 valc 1

+O(y 2)

4Valb2y

+O(y 2)
w

4vb2clY

+O(y)

2 valc 1

+ O(y 2 )

2Valb2y

+O(y 2 )

2 vb2qy

+O(y 2 )

+2V(alc 2 + a2cl)Y

+O(y 2)

+4V(alc 2 + a2cl)Y

+ O(y 2 )

2 valc 1

+2 v(alc 2 + a2c t )y

+ O(y2 )
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Table2.4 Near-wallasymptoticbehaviorof eij- I-I*ij(representing the overall behavior of the

Reynolds-stress equation in the near-wall region).

ii

11

22

33

12

23

13

eij - l-I_ (exact) NWRS NNWRS

2va 2 +4vala2Y 2va 2 +8vala2Y2va 2 + 12vala2Y

+ O(y 2)
m

12 vbZy 2

+O(y 3)

2vc 2 + 12vqc2Y

+ O(y 2 )

12 vb2y 2

+O(y 3 )

+O(y 2)
B

7vb_y 2

+O(y 3 )

2 vc 2 + 4 VClC2y
m

2 vc 2 + 8 VClC2y

Cho et al. (1995)

2 va 2 + 4 vala2y

+ O(y 2)

8 vb2y 2

+O(y 3)

2 vc 2 + 4VClC2y

+O(y 2)

6valbzY

+O(y 2)

6vb2qy

+O(y 2)

2 valc I

+6V(alc 2 + a2c 1)Y

+ O(y 2 )

+O(y 2)

6 Valb2Y

+O(y 2)

6vb2qy

+O(y 2)

2 valc 1

+O(y 2)

4 valb2y

+O(y 2)

4 vb2clY

+O(y 2)

2 valc 1

+ O(y 2 )

2 valb2Y

+O(y 2)

2 vb2c Iy

+O(y 2)

+2 v(alc 2 + a2c I )y

+ O(y 2 )

+4 V(alc 2 + a2c I )y

+ O(y 2 )

2 valc 1

+2v(alc 2 + a2q)y

+ O(y 2 )
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Fig. 2.1 Near-wall behavior of dissipation rate tensor eq compiled from DNS data for fully
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3 Validation Against Simple Wall-Bounded Turbulent Flows

3.1 Introduction

In this section, the newly developed near-wall Reynolds stress (NNWRS) model is verified

by comparing the model predictions with the DNS results and laboratory measurements for fully

developed channel flow, pipe flow, and plane Couette flow, and for zero pressure gradient

boundary layer flow over a flat plate. Further verification of the model predictions for complex

turbulent flows are carried out in the following sections. For comparison, the corresponding

predictions from the NWRS model are also presented in this section. The DNS experiments at

low Reynolds numbers provide valuable data to validate turbulence models, especially in the near-

wall region where measurement inaccuracy often arises. The simple flows considered in this

section can be classified as internal and external flows. Channel flow, pipe flow and Couette flow

are internal flows, whereas flat plate boundary-layer flow is an external flow.

In a fully developed channel flow, the mean velocity is governed by

- v -uv (3-1)

which shows that the constant pressure gradient balances the gradient of the total shear stress

(including the viscous and turbulent stress), and acts as the driving force of the flow. The mean

flow equation governing fully developed pipe flow is the same as (3-1) but written in cylindrical

coordinate. The momentum equation for a fully developed Couette flow is governed by

0 = _ ( t) cgUo3y.-_1 ' (3-2)

where the pressure gradient is zero, and the flow is driven by the moving wall. Consequently, the

total shear stress in a Couette flow is constant in the entire flow domain. The pressure gradient in a

boundary-layer flow over a flat plate is also zero, and equation (3-2) applies to the near-wall

region. Away from the wall, the inertial force becomes important, and the momentum equation has

the form
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u U+ ou (vou_ )vW= (3-3)

In wall-bounded flows, two regions can be identified; the inner layer and the outer layer (or

the defect layer). The overlap of these two layers gives arise to the logarithmic layer where the log

law of the wall applies (Fig. 3.1). Thus, the mean velocity in the log layer can be expressed as

U +=K -llny++B , (3-4)

where U+= U/ur, y+= yu_/v are the non-dimensional mean velocity and wall normal

distance, respectively; K is the yon Karman constant, and B is another constant, with K- 0.4 and

5 < B < 5.5 depending on the type of flows. It is essential for a turbulence model to predict

correctly the log-law region for both internal and external wall-bounded flows. Very close to the

wall (y+ < 5) is the viscous sublayer, where viscosity dominates and velocity varies linearly with

the wall normal distance. In the outer layer (or defect layer), far away from the wall, the flow field

is entirely turbulent, and fully developed channel, pipe and Couette flows show little wake

characteristic compared with boundary layer flow with zero pressure gradient.

In addition to the comparisons of the predicted mean and turbulent flow fields with existing

data, the NNWRS model is also tested by examining its ability to reproduce Reynolds number

effects on simple flows. Both the mean and the turbulent flow fields are influenced by the flow

Reynolds number. So et al. (1996) demonstrated that the NWRS model is capable of assessing

Reynolds number effects on internal and external flows. Following So et al. (1996), we shall also

examine the ability of the NNWRS model to replicate Reynolds number effects in simple flows.

The Reynolds number range considered varies from Re_ = 180 to Re¢ = 8758 for fully-developed

channel/pipe flows and from Re 0 = 1410 to Re 0 = 2420 for flat plate boundary layers, where

Re r=u¢h/v, Re 0=Uoo0/v, h is the half-width of the channel or pipe radius, 0 is the

momentum thickness and U. is the freestream mean velocity.
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3.2 Fully-Developed Channel/Pipe and Couette Flows

For fully developed channel/pipe and Couette flows, the modeled equations in NNWRS and

NWRS models reduce to ordinary differential equations (see appendix C. 1-C.3). Therefore, they

are relatively easy to solve. Here an iterative scheme is used to solve the governing equations with

the following convergence condition,

¢_+1. _ _jn < 10 -5 (3-6)

where _7 denotes a dependent variable at the jth grid point in the nth iteration. Only the lower half

flow domain is considered in fully developed channel/pipe flows because the flow fields are

symmetric about the centerline. The grid points are clustered close to the wall and stretched out

away from the wall. For Couette flow, the entire flow domain is computed with specified mean

velocity at the moving wall. The grid points are distributed symmetrically about the centerline with

more points near the walls. The number of grid points used in channel/pine flow computations

varies from 180 to 250 depending on the flow Reynolds number, and about twice the number of

grid points are used in Couette flow computations. The first grid point away from the wall is

located at y+ = yu r / _ = 1, where y is the wall distance.

The no-slip boundary conditions are used to specify the mean velocity and turbulent stresses

at a moving ( Um > 0) or stationary ( U m = 0) wall,

U = Um, uu = vv = ww = uv = O , (3-7a)

and the following expression,

e w = 2 t_(O_f-k / oqy)2w , (3-7b)

is used to specify the dissipation rate e at the wall. In fully developed channel/pipe flows, the

boundary conditions at the centerline can be given as

Ou O-J O-J Ow & --
.... uv = O , (3-7c)
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dueto thesymmetryof theflow field (incaseof pipeflow, cylindrical polarcoordinatesareused

and (3-7c) with y+ = Rer- r +, where r + is the radial coordinate, gives the corresponding

boundary conditions at the centerline of the pipe ( r + = 0).

3.2.1 Fully-developed channelflows For fully developed channel flow, two DNS cases

studied by Kim et al. (1987) at Rer = 180 and Kim (1991) at Rer = 395 are used to test the

models. Two damping functions, (2-29a) for Rer = 395 and (2-29b) for Re_ = 180, are required

for the NWRS model to give a reasonable agreement with the DNS results. On the other hand,

only one damping function, (2-33), is used in the NNWRS model for both Rer = 180 and 395.

The model predictions of the mean velocity profiles over the half channel width at Re _ = 180

and 395 are plotted in Figs. 3.2a - 3.2b. Both the NNWRS and NWRS model results agree very

well with the DNS results (Kim et al. 1987; Kim 1991). Near the centerline, the velocity profiles

predicted by the NNWRS model slightly deviate from those given by the DNS data. In the log

layer, the von Karman constant (3-4) is determined with the procedure outlined by So et al.

(1994). The NNWRS (NWRS) model gives K=0.38 (K=0.40) at Re_ = 180 and K=0.40

(K = 0.39) at Rer = 395. Compared to K = 0.40 given by the DNS for both cases, the NNWRS

slightly underpredicts the K value at Re r = 180, but gives same K value at Re r = 395. In

contrast, the NWRS model underpredicts the K value at Re r = 395, but replicates the same DNS

result at Re_ = 180. Overall, the mean velocity profiles in fully developed channel flow given by

both models, including the log-law behavior, are in good agreement with the DNS results.

The comparisons between the model predictions for turbulence quantities in fully developed

channel flow at Re r = 180 and Re r = 395 and the DNS results are presented in Figs. 3.3 - 3.6.

Figs. 3.3a-3.3b show the turbulent kinetic energy profiles over the entire computational domain,

i.e., half the channel width. The agreement between the NWRS model predictions and the DNS

results is very good for both Reynolds numbers. The agreement between the NNWRS model

results and the DNS results is reasonable, although the peak values of k + are underpredicted by

the NNWRS model in both cases. Away from the wall, the NNWRS model gives slightly higher

turbulent kinetic energy k + at Rer = 180, but slightly lower k + at Re r = 395. Figs. 3.4a-3.4b
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plot the dissipation rate profiles for Rer =180 and Rer =395 in the near-wall region,

respectively.Both modelsessentially capturethevariationsof thedissipationratepredictedby

DNS,e.g.,a maximumvalueatthewall, a smallplateauin aregioncloseto thewail, andgradual

attenuationawayfrom thewall. TheNNWRSandNWRSmodelsoverpredictthedissipationrate

in thenear-wallregion,butagreewell with theDNSawayfrom thenear-wallregion. Figs.3.5a-

3.5bshowthecomparisonof thepredictedturbulentshearstressprofiles with theDNSdata. The
--+

shear stress uv appears in the equation for mean flow (3-1), and therefore it is crucial for the

correct prediction of the mean velocity. These figures show that the agreement between model

predictions of the turbulent shear stress and the DNS results is excellent in both cases. Finally,

Figs. 3.6a-3.6b plot the root-mean-square of the turbulent fluctuations (square root of the turbulent

normal stresses) in the streamwise, wall normal and transverse directions, Urms+ , Vrms+ , Wrms+ ,

respectively. Compared to the DNS results, in the near-wall region, both models underpredict

+ and + The NWRS model predictions of the turbulent fluctuationsUrns+,but overpredict Vrm s Wrm s.

are in better agreement with the DNS data than those from the NNWRS model. Consequently, the

NWRS model predicts more accurately the anisotropy of the near-wall turbulence than the

NNWRS model. Away from the wall, turbulence becomes more isotropic, and both models give

almost the same results.

According to asymptotic expansions (2-24), we have k ÷ / e ÷ = 0.5y ÷2 + O(y +3) in the near-

wall region. To further examine the performance of the models in the near-wall region, we plot

model predictions of k ÷ / e + versus y+2 in Fig. 3.7 to see if k + / (e+y +2) = 1 / 2 is true in the

near-wall region. Fig. 3.7 shows that k ÷ / (e+y +2) = 1 /2 is indeed true in the near-wall region for

both models.

3.2.2 Fully-developed pipe flows

gradient in the streamwise direction.

Fully developed pipe flow also has a constant pressure

It is marginally more complicated than fully developed

channel flow because of the cylindrical geometry. Four experimental data sets with a large range

of Reynolds number are selected to test the models: they are the measurements of Durst et al.

(1993) with Re r =250, Schildknecht et al. (1979) with Re r =489, and Laufer (1954) with
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Rer = 1052and8758. In termsof bulk ReynoldsnumberRe= UmD/t), it ranges from 7,500 to

500,000 in these four cases. Thus, the Reynolds number considered is quite high compared to

many test cases investigated by other researchers. The number of grid points required for grid

independent results are found be 108. In the NWRS model, damping function (2-29b) is used for

the lowest Reynolds number case Re r = 250, and (2-29a) is used for the other three high

Reynolds number cases.

Figs. 3.8a - 3.8d show the comparison between the predicted and measured mean velocity

profiles for the four cases considered. The NNWRS model gives an excellent prediction of U + in

the near-wall region for all cases and in the entire flow region for Re T = 250 case, but it slightly

underpredicts the velocity in the region close to the centerline as the Reynolds number increases.

Even with the use of damping function (2-29b) for the low Reynolds number flow, the NWRS

model still underpredicts the mean velocity in the log-law region for the Rer = 250 case. For the

other three higher Reynolds number cases, the NWRS model also underpredicts the mean

velocities in the region close the centerline, although its predictions are slightly better than those

obtained from the NNWRS model. The predicted and measured von Karman constants for these

four cases are presented in Table 3.1. Overall, both models reproduce well the mean velocity

profiles including the log-law behavior in fully developed pipe flow.

Figs. 3.9 - 3.12 compare the predicted turbulence quantities with available experimental data.

In each figure, four panels are presented for the four different Reynolds number cases. In Figs.

3.9a - 3.9d, the peak value of the turbulent kinetic energy k ÷ is underestimated by the NNWRS

model except for the Re r = 250 case, whereas it is well predicted by the NWRS model in all

cases. Away from the wall, both models give almost the same results, which agree with the

measurements reasonably well. Both models give almost the same predictions of the dissipation

rate (see Figs. 3.10a - 3.10d), except in the near-wall region where the dissipation rate predicted

by the NWRS model has a more noticeable plateau. The predicted dissipation rate has a maximum

value at the wall (Figs. 3.10a - 3.10d), which disagrees with the experimental data in the near-wall

region (Figs. 3.10b - 3.10c). Away from the wall, the agreement between the model predictions
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andmeasurementsis verygood. Figs. 3.1la - 3.1l d show theexcellentagreementbetweenthe

modelpredictionsof theturbulentshearstressandthemeasurementswheneverthemeasureddata

areavailable. As in channelflow, modelpredictionsunderestimatetheturbulencefluctuation in

the streamwisedirection + in the near-wall region, whereasoverestimatethe turbulenceUrms

fluctuations in the wall normal and transverse directions Vrms+ and Wrms+ (Figs. 3.12a - 3.12d). The

exception is the highest Reynolds number case Re r = 8758 in which the wrms+ is underpredicted

by both models (Fig. 3.12d). Fig. 3.13 plots k + / e + as a function of y+2 for the four cases with

Re r ranging from 250 to 8758. As in channel flow, the predicted k + / e + in pipe flow follows

the line representing k + / (e+y +2) = 1 ! 2 in the near-wall region.

3.2.3 Fully-developedplane Couetteflows In plane Couette flows, one wall is stationary and

the other is moving. A fully developed state is reached when the moving wall is dragged with a

constant speed. The moving wall provides the energy to drive the flow. In the fully developed

state, the total shear stress (viscous plus turbulent) is constant everywhere. Despite the seemingly

simplicity of the flow, fully developed Couette flow is rather difficult to realize in laboratory,

because of the difficulty in setting up the moving wall. But, it is a simple case for DNS (Lee and

Kim 1991; Kristoffersen et al. 1993). The DNS data revealed some distinct features in Couette

flow. For example, large scale eddies can be identified in the core region; flow in this region is

quasi-homogeneous with turbulence production equal to dissipation rate but highly anisotropic.

These features are quite different from those in Poiseuille flow driven by pressure gradient.

Calculations are carried out for Couette flow with Reynolds number (based on half channel

width) Rer = 170 and Re r = 625, and the results are compared with the DNS data given by Lee

and Kim (1991) for the Re r = 170 case and the experimental data given by El Telbany and

Reynolds (1980) for the Re r = 625 case. The damping function (2-29a) is found to be suitable

for both cases, although the Reynolds number in Lee and Kim's (1991) case is rather low

(Re r = 170). This indicates that plane Couette flow is less dependent on Rer than Poiseuille

flow, which becomes more transparent by comparing the mean flow equations given in Appendix

C. A term proportional to 1 / Rer appears in the non-dimensional mean flow equations for channel
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(C-l) and pipe flows (C-14). However,no such term appearsin the meanflow equationfor

Couetteflow (C-27).

Sinceall the turbulentquantitiesin Couetteflow aresymmetricaboutthe centerlineand

(U / U m - 1 / 2) is anti-symmetric about the centerline (Um is the speed of the moving wall), we

first present the model results in the lower half of the flow domain for both cases, and then show

the results for the second case (Re r = 625) in the entire domain. Figs. 3.14a-3.14b compare the

model predictions of the mean velocity profiles with the DNS results for Re r = 170 and the

experimental data for Re r = 625. Model predictions agree well with the data, although the

NNWRS model slightly underpredicts the mean velocity in the core region. The predicted yon

Karman constant is very close to the K values from DNS and measurements (Table 3.2).

In the near-wall region, the behavior of turbulent quantities is similar to their counterparts in

Poiseuille flow (channel/pipe flows) (Figs. 3.15-3.18). Away from the near wall region, all the

turbulent quantities rapidly becoming constant, and the turbulent flow field becomes homogeneous

but remains isotropic (see Fig. 3.18). Again, the predicted k + / e + by both models in the near-

wall regicn follow k + / (e+y +2) = 1 / 2(Fig. 3.19). Fig. 3.20 compares the predicted U / U m, k +,

E +, UV--+, Urms+ , Vrms+ , Wrms+ with the measurements for the Re r = 625 case over the entire flow

domain. The mean velocity and the turbulent shear stress are accurately reproduced by both

models. In the core region, both models underestimate the turbulent kinetic energy k + and the

turbulent fluctuation in the wall normal direction Vrms+ . The turbulent fluctuation in the other two

directions + and +Urms W_s are predicted quite accurately.

3.3 Plane Boundary-Layer Flows with Zero Pressure Gradient

For two dimensional boundary-layer flow, the governing equations of the models become

parabolic (Appendix C.4). Wilcox's C1993) implicit, two-dimensional code developed for two-

equation turbulence models is modified for the NNWRS and NWRS models. His code

incorporates the compressible form of Levy-Lees transformation (Appendix C.5), which removes

the singularity near the leading edge of the plate. In this transformation, dimensionless parameters
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areintroducedto representthecompressibleeffects. Theseparametersaresetto zeroandonefor

incompressibleandisothermalflows,respectively.Thus,westill canusethesametransformation

to removethesingularitynearthe leadingedgeof theplatefor incompressibleturbulentboundary-

layerflow.

Computationsarecarriedoutby marchingin thedownstream(x) directionwith iterationsin

thewallnormal(y) direction. Thestepsizein thedownstreamdirection is adjustedaccordingto

how well thesolution is convergedat thepreviouscross-sectionlocation. In eachcross-section,

the distribution of the grid points follows a geometricprogressionratio formula. After each

iteration,thecodechecksfor sufficientgrid width. This is doneby checkingthedifferenceof the

meanvelocity values betweentwo successivegrid points nearthe edgeof the layer. If the

differenceis largerthan about10-4, a grid point is addedto thedomain. This ensuresthat all the

wall normalderivativeswill bezeroneartheboundarylayeredge.Convergenceis attainedif the

maximumerrorsin themeanandturbulencequantitiesbetweentwo successiveiterationsis less

than10-4.

Theturbulencequantitiesattheedgeof theboundarylayer,UUe, VVe, WWe, UVe and ee, are

determined by solving the following ordinary differential equations,

_1 2
Ue oUUe -- Cll?.ebll + C2Ee(b21 +b122 "_I"I)-- _'E"e (3-8a)c_x

m

1 2

Ue c)VVe6_x_ C1Eeb2 2 ..p f 2Ee(b22 + b22 ___Fi)___ee , (3-8b)

--E

Ue c)WWe_x - -ClEeb33 -t- C2Ee(b23 -3 I-I)-2_'e , (3-8c)

_UVe

Ue _?x - Cl_eb12 +C2_e(bllb12 +b12b22) ' (3-8d)

2

Ue °3ee - Ee (3-8e)
63x Ce2 k--_

which are reduced from the Reynolds stress equations in the models (Appendix C.4) under the

assumption that all the wall normal derivatives vanish in the free stream. Therefore,
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UUe, lPVe, WWe, UVe, and Ee given by (3-8) automatically satisfy the zero normal gradient

conditions.

At the initial marching location, a total of 150 grid points are used to cover the computational

domain. As the boundary layer grows in the downstream, the number of grid points increases. In

the numerical computations, the grids are distributed so that at least 15 points are located within

+
y <5, and more than 40 points are placed in the region 5<y+<65. Furthermore, the

distribution ensures that the first grid away from the wall is placed within y+ < 1.

Two boundary-layer flow cases are selected to test the models' ability to replicate simple

external flows. Model results are compared with the DNS data given by Spalart (1988) at

Re 0 = 1,410 and the detailed measurements of Karlsson and Johansson (1988) at Re 0 = 2,420

(Figs. 3.21 - 3.25). The predicted mean velocity profiles, which show the existence of a wake

region in the outer layer, agree well with the DNS data and measurements (Figs. 3.21a- 3.21b).

--+ + + and ÷ andThe agreement between the predicted turbulent quantities k +, e +, uv , Urrns, Vrms, Wrms

the available data for both cases is reasonable (Figs. 3.22 - 3.25). At Re 0 = 1,410, the turbulent

--+ + + and +quantities k +, uv , Urms, Vrms, Wrms are first presented in the near-wall region and cross the

boundary layer. In general, the NWRS model gives more satisfying predictions of the turbulence

field in the near-wall region. The variations of the predicted turbulence quantities in the near-wall

region are similar to those of the internal flows, with the exception that the maximum dissipation

rate predicted by the NNWRS model is at a location very close to the wall, instead of the wall itself

(Figs. 3.23a - 3.23b). As expected, all the turbulence quantities approach zero close to the edge of

the boundary layer and match the freestream condition (Figs. 3.22 - 3.25). Fig. 3.26 shows that

predicted ratio k + / e + in the near-wall region varies according to y+2, as in the internal flows.

Note that unlike the internal flow computations in which Re T is specified, the boundary-

layer computations are carried out by providing mean velocity and turbulent quantities at the initial

location and free stream. Consequently, the wall shear stress, %, is a predicted result rather than

an input. The accuracy of this quantity or the skin friction coefficient CU = 2":w / (PU 2) can be

taken as an indication of the models' ability to predict external flows. Thus, in addition to
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comparingthe vonKarmanconstantK, the calculated and measured Cf are also compared (see

Table 3.1). From Table 3.1, one can see that the predicted K and Cf agree well with the known

results for both cases.

3.4 Reynolds-Number Effects on Simple Turbulent Flows

Using dimensional analysis, Millikan (1939) argued that Reynolds number effects could not

be present in the mean velocity in wall-bounded turbulent flows. His argument is correct only in

the near-wall region. Mellor and Gibson (1966) showed that Reynolds number has influence on

the mean velocity in the outer region. Purtell et al (1981) pointed out that as Reynolds number

decreases, the logarithmic region slowly disappears, while the viscous region remains unaffected

by the decreasing Reynolds number.

When local similarity arguments are applied to the higher-order turbulent statistics, they

imply that, at least in the inner layer, individual second-order statistics at different Reynolds

numbers would collapse into a single curve if they are nondimensionalized by using inner-layer

scalings. Recently, direct numerical simulations, together with experimental measurements and

analysis, have shown that Reynolds number effects on wall-bounded turbulent flows are evident,

not only in the mean flow but also in the second-order statistics of the turbulence field. A most

convincing demonstration of the Reynolds number effects on second-order statistics was given by

Bandyopadhyay and Gad-el-Hak (1994), who showed that the location of the peak value of the

turbulent shear stress, normalized by t) / u r, increases with Reynolds number. So et al. (1996)

have demonstrated that the NWRS model can predict the Reynolds number effects on mean and

turbulence flow fields in simple flows with a wide range of Reynolds numbers. In what follows,

we examine the ability of the NNWRS model to replicate the Reynolds number effects in wall-

bounded simple turbulent flows.

3.4.1 Reynolds-number effects on meanflow To show the Reynolds number effects on the

mean flow, the predicted normalized mean velocity by the NNWRS model for internal (channel

and pipe) and external (boundary layer) flows with different Reynolds numbers are plotted together
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inFigs.3.27aand3.27b,respectively.NotethatCouetteflow is excludedin this sectionbecause

it is lessdependentonReynoldsnumbercomparedwith theotherinternalflows. For comparison,

theavailableDNS and experimentaldataarealsoplotted in Fig. 3.27. For channel/pipeflow,

modelpredictionsandtheavailabledatashowlittle wakecomponent,andthelog layerextendsall

theway to thecentertine(Fig. 3.27a).Theextentof the log layerincreasesasReynoldsnumber

increases.In theviscouslayer,thedataandmodel resultsareall very well correlatedby a single

curve U + = y+. On the other hand, for boundary layer flow, the model results and the available

data show a wake component in the defect layer and a reduction of the log-law region as Reynolds

number decreases (Fig. 3.27b). However, the mean velocity in the viscous layer is unaffected by

Reynolds number and again is well approximated by U + = y+.

In the log layer, the velocity profile varies according to (3-4). The yon Karman constant K

obtained by following the procedure outlined in So et al. (1994) for each individual case has been

given in Table 3. I. From Table 3.1, one can see that Reynolds number has no influence on the

von Karman constant in wall-bounded flows. In fact, the velocity profiles for different Reynolds

numbers in the log layer can be well correlated by (3-4) with K = 0.40 and B = 5.2 for

channel/pipe flow (Fig. 3.27a), except for the Re_ = 8758 case where the mean velocity is

underpredicted by the NNWRS model, and with K = 0.41 and B -- 5.2 for boundary layer flow

(Fig 3.27b). Both models do a fair job of reproducing the universal inner-layer behavior and the

prediction of K is within the error margin of its determination from experiments. In general, a

value of 0.40 is obtained and this is in agreement with experimental and DNS data.

For boundary-layer flow, the effects of Reynolds number on the shape factor H = _* / 0

(where _* and 0 are the displacement and momentum thickness of the boundary layer,

respectively) and skin friction coefficient Cf = 21:w /pU 2 are also examined. The predicted and

measured H and Cf are reported in Table 3. I. The DNS and experimental data show that H and

CU decrease as Reynolds number increases, which is also predicted by the models. Both models

predict the shape factor well. But the NWRS model gives a more accurate prediction of the skin
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friction coefficientthantheNNWRS model. Overall,Reynoldsnumbereffectson themeanflow

arefairly well reproducedby theNNWRSmodel,aswell asby theNWRSmodel.

3.4.2 Reynolds-number effects on turbulence statistics Momentum transport in two-

dimensional wall-bounded turbulent flows is mainly carried out by the Reynolds shear stress.

Therefore, it is of paramount importance to model the shear stress behavior correctly. In fully

developed channel/pipe flows, the normalized shear stress can be expressed as

--+ - y+ (3-9)-uv =(1 / Re r ) - dU+ / dy +

Assuming a universal velocity profile, it can be seen from (3-9) that the Reynolds number

dependence of the shear stress in the inner layer is rather strong at low Reynolds number. Wei and

Willmarth (1989) examined channel/pipe flows and found that the normalized shear stress at

different Reynolds numbers does not collapse in the outer layer and the separation of the different

profiles is still discernible in the inner layer. The calculated shear stress profiles for different

Reynolds numbers are plotted together in Figs. 3.28a and 3.28b for channel/pipe and boundary-

layer flows, respectively. Whenever the DNS and experimental data are available, they are also

plotted in the figures for comparison. Fig 3.28 shows that in the logarithmic and outer regions, the

shear stress profiles spread out as Reynolds number increases. In the viscous layer, the shear

stress profiles at different Reynolds number in channel/pipe flow do not quite collapse into a single

curve, whereas they do collapse into a single curve in boundary-layer flow. Thus, the influence of

Reynolds number on the shear stress is more pronounced in channel/pipe flow than in boundary-

layer flow.

Another test of the ability of the NNWRS model to reproduce Reynolds number effects is to

plot the location of the peak shear stress versus Rer; for boundary layer flow, the reduced

Reynolds number defined as Re r = ur6 / _ is used instead (Bandyopadhyay and Gad-eI-Hak

+
1994). The location of the peak shear stress, denoted by yp, can be determined from the shear

+

stress profiles shown in Fig. 3.28. A log-log plot of yp versus Re r is shown in Fig. 3.29 for all

the flows examined. According to Sreenivasan (1988), a linear relation should exist between In yp
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+ = 2(Rer)1/2andInRer. BandyopadhyayandGad-el-Hak(1994)showedthatthestraightline yp

correlates well with the experimental data they examined in a log-log plot. Fig. 3.29 shows that

the calculated results by the NNWRS model also correlate well with the same straight line.

The normalized production of kinetic energy, /5+ =_h--_v+(dU +/dy+), is shown to be

relatively independent of Reynolds number in the outer region of channel flow but not so in the

inner region (Wei and Willmarth 1989). Furthermore, the location of the peak value of/5+ is also

relatively independent of Reynolds number (Bandyopadhyay and Gad-el-Hak 1994), although the

location of the peak shear stress varies with Re r (see Fig. 3.29). These conclusions can also be

deduced from (3-9) and the definition of/5+. As Re r _ _, /5+ reaches its maximum 1/4. The

calculations and measurements of/5+ plotted versus Iny + are shown in Figs. 3.30a - 3.30b. As

expected, there are no Reynolds number effects on the calculated /5+ in the outer layer for

channel/pipe flow and boundary-layer flow. In the inner layer, the dependence of /5+ on

Reynolds number in internal and external flows is different (cf. Fig. 3.30a with 3.30b). In

channel/pipe flow, /5+, particularly its peak value, distinctly depends on Re r. Although the

calculated location of the peak shear stress uv varies with Re r (Fig. 3.29), there is little variation

in the location of the peak value of the predicted /5+. In both channel/pipe flow and boundary-

layer flow, /5+ peaks at about y+ =10, which is consistent with y+ =12 given by

Bandyopadhyay and Gad-el-Hak (1994) who examined different sets of data with a different

Reynolds number range. The peak value of the calculated /5+ is close to I/4 and approaching 1/4

only at high Reynolds number. The Reynolds number also has more effects on the peak value of

the shear stress than the peak value of the production of kinetic energy (cf. Fig. 3.30 with 3.28).

The ability of the NNWRS model to predict these important features of wall-bounded flows is

another indication of the validity of the model.

The predicted turbulent dissipation rate e + and the viscous diffusion of turbulent kinetic

energy, D + = d2k+/dy +2, are compared with DNS data and measurements in Figs. 3.3 l a -

3.3 lb. Very near the wall, the dissipation rate is approximately balanced by the viscous diffusion.
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According to the asymptoticanalysisin Section2, this suggeststhat the pressurediffusion is

muchweakerthantheviscousdiffusionandthedissipationratein theviscouslayer. Thepredicted

viscousdiffusion is not sensitiveto the variationof Reynoldsnumber,neitheris thedissipation

rateexceptat very low Reynoldsnumbers.

3.5 Concluding Remarks

In this section,theNNWRS modelhasbeenverifiedby comparingmodelpredictionswith

theDNS dataandmeasurementsfor fully-developedwall-boundedsimple flows: channelflow,

pipeflow, andCouetteflow, andfor boundary-layerflow. The resultsshow that the NNWRS

modelpredictsthemeanandturbulentflow fields of internalandexternalflows reasonablywell.

The model is also ableto capturethe log-law regionwith a correct von Karmanconstantand

replicatetheReynoldsnumbereffectson the meanflow andsecond-orderstatistics. The main

deficiencyin the model is that it predictslessdegreeof turbulenceanisotropyin the near-wall

regioncomparedto theNWRSmodel. Thismaybeattributedto themoregeneralformulationin

theNNWRS model,i.e., nowall normalhasbeenusedin themodel. In thenextsection,weshall

applytheNNWRSto studywall-boundedcomplexturbulentflows.

46



0

0

.__

e.-.

e"

°_

C"

£

O

O

E
O

Z

0

X I I I I I I

I I I I ! I

%
X I I I I I I

I I i I I I

_ _ i_'_

t_ m

o .m NZ_

M _

I I

8. &
._ °,_

I

t_

&
°..._

¢_,A,

O

0---.

(',1 ¢--1

i

O

m _

_5

O

_5

_¢3 ('¢3

("1 '_
"_" V3

I

o_

47



Table 3.2 Comparison of the predicted K with data in Couette flow.

Data Source Re_ Data

Lee and Kim (1991) 170 0.40
(DNS)

E1 Telbany and Reynolds 625 0.39
(1980) (EXP)

NNWRS NWRS

0.40 0.39

0.40 0.40
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Fig. 3.1 Sketch of different flow regions in a wall-bounded turbulent flow.
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Fig. 3.2a Comparison between the predicted and DNS mean velocity profiles in the fully

developed channel flow at Re T = 180.
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Fig. 3.2b Comparison between the predicted and DNS mean velocity profiles in the fully

developed channel flow at Rer = 395.
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Fig. 3.3a Comparison between the predicted and DNS turbulent kinetic energy in the fully

developed channel flow at Re r = 180.
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Fig. 3.3b Comparison between the predicted and DNS turbulent kinetic energy in the fully

developed channel flow at Re T = 395.
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Fig. 3.4a Comparison between the predicted and DNS dissipation rate in the near-wall region of

fully developed channel flow at Re r = 180.
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Fig. 3.4b Comparison between the predicted and DNS dissipation rate in the near-wall region of

fully developed channel flow at Re r = 395.
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Fig. 3.5a Comparison between the predicted and DNS turbulent shear stress in the fully developed
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Fig. 3.5b Comparison between the predicted and DNS turbulent shear stress in the fully developed

channel flow at Re T = 395.
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Fig. 3.6b Comparison between the predicted and DNS turbulent fluctuations in the fully developed

channel flow at Re r = 395.
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Fig. 3.8d Comparison between the predicted and measured mean velocity profiles in the fully

developed pipe flow at Re r = 8758.
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Fig. 3.9b Comparison between the predicted and measured turbulent kinetic energy in the fully

developed pipe flow at Rer = 489.
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Fig. 3.9c Comparison between the predicted and measured turbulent kinetic energy in the fully
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Fig. 3.9d Comparison between the predicted and measured turbulent kinetic energy in the fully

developed pipe flow at Rer = 8758.
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Fig. 3.10b Comparison between the predicted and measured dissipation rate in the near-wall region
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pipe flow at Re r = 8758.
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developed pipe flow at Re r = 8758.

63



3-

2.5-

2

1.5-

1-

0.5-

0

0

Re = 250
t o Durst et al. (1993)

6)b ...... NWRS
q _u__o -- NNWRS

). U / Ln,_

/
¢

50 100 150 200 250

Re - r÷
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Fig. 3.12b Comparison between the predicted and measured turbulent fluctuations in the fully
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Fig. 3.15b Comparison between the predicted and measured turbulent kinetic energy in the fully

developed Couette flow at Re r = 625.
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Fig. 3.18b Comparison between the predicted and measured turbulent fluctuations in the fully

developed Couette flow at Re r = 625.
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Fig. 3.24b Comparison between the predicted and measured dissipation rate in the near-wall region

of boundary-layer flow at Re o = 2420.
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Fig. 3.27a Comparison between the predicted and DNS turbulent fluctuations in the near-wall

region of boundary layer flow at Re 0 = 1410.
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Fig. 3.27b Comparison between the predicted and DNS turbulent fluctuations cross boundary

layer at Re 0 = 1410.
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Fig. 3.30b Comparison of calculated mean velocity plotted in inner-layer variables to show
Reynolds number effects in boundary layer flows.
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VALIDATION AGAINST TURBULENT FLOWS WITH SWIRL AND

SYSTEM ROTATION

4.1 Introduction

Swirling and rotating turbulent flows are often encountered in engineering applications. In

swirling flows, the induced swirl velocity component changes the paths of fluid particles from

parallel to spiral. The flow pattern is affected by the centrifugal force associated with local

streamline curvature. Recirculation may appear in the central region of the pipe close to the inlet.

In rotating flows, the rotation effect on flow patterns depends on the orientation of the rotating

axis to the mean flow plane, i.e. the relative importance of the centrifugal force to the Coriolis

force. Flow in a rotating pipe is mainly subject to the centrifugal force because the rotating axis is

parallel to the mean flow direction. On the other hand, only Coriolis force is dynamically

important to fully developed channel flow with rotating axis perpendicular to the mean flow plane.

Therefore, with the presence of swirl and rotation, the flows become much more complicated than

those discussed in Section 3. Although the present wall-independent near-wall Reynolds stress

(NNWRS) model is developed for flows with complex geometry, the model is also expected to

perform well for swirling and rotating flows. In this section, its ability to replicate such complex

flows is tested and compared with that of the NWRS model.

4.2 Turbulent Swirling Flows in a Straight Pipe

4.2.1 Background Earlier studies on swirling flows were mainly concerned with the mean flow

and pressure drop measurements and the decay of swirl along the pipe (Kreith and Sonju 1965;

Backshall and Landis 1969; Yajnik and Subbaiah 1973, Murakami et al. 1976; Padmanabhan and

Janek 1980; Ito et al. 1980; Kito 1984; Kito and Kato 1984). Little attention was paid to the decay

of the turbulence field. Measurements on the evolution of the turbulence field were carried out

only recently (Algifri et al. 1987; Kitoh 1991; Parchen et al. 1993).

Swirling flows in a straight pipe can be generated by rotating an inlet section of the pipe

(Weske and Sturov 1974) or by a vane swirler installed at the entrance of the pipe (Kitoh 1991).
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The swirl intensity can be measured by the swirl number S defined as the ratio of the angular

momentum to the axial momentum. For axisymmetric flows, swirl number can be expressed as

(Kitoh, 1991 )

s = 2J°°

or

UWr2 dr

3 2 ' (4-1)
roUm

where U and W are the mean velocity components in the axial and azimuthal, respectively; U m is

the bulk mean axial velocity; r and r 0 are the radial position and the pipe radius.

Fig. 4.1 shows a typical azimuthal velocity profile W in axisymmetric swirling pipe flows.

In the so called forced-vortex region, the velocity profile resembles that associated with rigid-body

rotation, i.e., the velocity linearly increases with increasing distance from the centerline. The mean

vorticity in the axial direction is a constant in this region. Outside the forced-vortex region, the

velocity starts decreasing and matches the wall boundary condition through the boundary layer.

The region between the boundary layer and the forced-vortex region is called the free-vortex region

because the axial vorticity strength is almost zero there. Table 4.1 summaries the characteristics of

swirling flows in forced- and free-vortex region. In forced vortex region, the rotational strain

associated with swirl (o_W / o_r - W / r) / 2 is zero and swirl does not provide additional turbulent

production. On the other hand, in the free-vortex region, the rotational strain is not zero and swirl

provides extra production. Turbulence is thus stabilized in the forced-vortex region and

destabilized in the free vortex generated by swirl. The extent of the forced- and free-vortex

region in swirling flows depends on swirl intensity and the way swirl is generated. For instance,

the swirling flows in Weske and Sturov's (1974) experiments, generated by a rotating gird in the

inlet section, are forced-vortex-dominated, whereas the swirling flows generated by a vane swirler

in Kitoh's (1991) experiments are free-vortex-type.

Flow characteristics near the pipe centerline also depends on the swirl number S. For flows

with S < 1, a reverse flow region usually is not observed because the pressure depression is not

strong enough to create a reverse flow. For flows with S > 1, a reverse flow region may appear
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dependingon whether otherconditions,suchasReynoldsnumber,inlet conditionsandtheway

swirl is generated,are favorable to the formation of such region or not. For example, the

experimentsof Kitoh (1991)showeda reverseflow regionexisted,whereastheexperimentsof

WeskeandSturov(1974)did not indicatesuchregionexisted,althoughtheinitial swirl numberS,,

is greater than one in both cases.

Swirl decays along the pipe as a result of wall friction, and the mean azimuthal velocity

profile alters as flow approaches to the fully-developed state downstream. Swirl decay rate was

found to be dependent on inlet swirl intensity, Reynolds number, and pipe roughness (Seno and

Nagata 1972; Baker 1967; Padmanabhan and Janek 1980). For small swirl number, Kitoh (1991)

derived an exponential formula to predict the attenuation of axisymmetric swirling flow along the

pipe. For large swirl number, swirl decay rate can be obtained only by experiments or numerical

computations.

The unique features of swirling flows have already been made use of in a number of

engineering applications. Prominent among them are flames in gas turbines and furnace

combustors in which swirl strongly contributes to efficiency of combustion by enhancing mixing,

and to flame stability through recirculation. The primary mixing enhancement is attributed to

higher levels of turbulence generated by the additional mean shear strain. Table 4.2 compares the

mean shear strain components in swirling flows and parallel flows.

Turbulence in swirling flows is anisotropic. The anisotropy results from the uneven

weighting of swirl effect on turbulent normal and shear stresses. The degree of anisotropy

depends on the swirl intensity and the location in the flow. A rather careful analysis of this

anisotropic behavior was carried out by Lilley and Chigier (1971) using the mean flow

measurements of the swirling free jet experiment of Lilley and Chigier (1967). They found that

depending on swirl number, the ratio "r,_/'rr0 varies from 2 to more than 8, where rrx and fro

are the rx and r8 components of the turbulent shear stress, respectively. Consequently, only
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thosemoreadvancedturbulencemodelsthatcanreplicatestressanisotropicbehaviorareexpected

to givesatisfactorypredictionsof swirling flows.

So far, most modeling work on swirling flows havebeencarriedout by using modified

versionsof two-equationmodels(Sloanet al. 1986). With the isotropic turbulenceassumption,

two-equationmodelsneedto be modifiedbefore they areusedto predict anisotropicswirling

flows. Greateffortshavebeenput on theimprovementof swirl effect in two-equationmodeling.

Theimprovementwasoftenmarginalandobtainedin asingletestedcasewithoutfurthervalidation

in others. This necessitatestheneedof usingother turbulencemodelingbeyondthe Boussinesq

approximation.In otherwords,Reynoldsstressmodelingis neededfor amoreaccurateprediction

of swirling flows. A smallnumberof attemptshavebeenmadeto predictstronglyswirling flows

(freeorconfined)by usingReynolds-stressmodels(JonesandPascau1989;HoggandLeschziner

1989;Fu et al. 1988). The resultsshowclearly the superiorityof theReynoldsstressmodelsto

themodifiedtwo-equationmodels.

4.2.2 Boundary conditions and numerical implementation For axisymmetric swirling flows

in a straight pipe, the model governing equations are elliptic. To solve the equations in the (x, r)-

plane, boundary conditions at the inlet and outlet of the computational domain, along the centerline

of the pipe and at the wall are required. The inlet boundary conditions for numerical computations

are provided by the available experimental data at the first measured location (with interpolations if

necessary). Turbulence kinetic energy kin at the inlet of the computational domain can be specified

from the available turbulent normal stresses by

UUin "]- VVin "t- WWin

ki,, = (4-2)
2

The dissipation rate at the inlet is estimated from the turbulent kinetic energy according to

k3/2
,n (4-3)

Ein = T '

where l is the characteristic length scale of the case considered (such as the radius of the pipe in a

swirling pipe flow), and _, = 0.02 is a parameter. The turbulent shear stresses at the inlet are
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specifiedfrom themeanshearstrainratesthroughtheBoussinesqapproximation.At theoutletof

thecomputationaldomain,negligiblediffusion conditionin theaxial direction is found to bethe

most appropriateoutlet boundarycondition. This implies that the secondderivativesof the

dependentvariablescanbeassumedto bezerofor a sufficient long computationaldomain (100

diametersin thepresentstudy).

Along thecenterlineof thepipe,zeronormalgradientisspecifiedfor all dependentvariables

exceptthosethattheyarezerothemselves,

O(U, W, uu, vv, ww, uw, e) =0, and V=uv= vw =0 (4-4)
Or

At the wall, the no-slip conditions are applied, i.e., all the variables are zero except dissipation rate

e, which is given by

)w (4-5)

The TEACH code for incompressible flows by Gosman and Ideriah (1976) is adopted for the

numerical computations. This code uses the finite volume (cell) method to discretize the transport

equations and adopts the SIMPLE (Semi-Implicit Method for Pressure-Linked Equations)

algorithm of Patankar and Spalding (1972) to solve the discretized system of equations. A detailed

account of the finite volume method and SIMPLE algorithm can be found in Patankar (1980),

among many other references. Here, a brief description is given to the finite volume method and

the solution procedure.

The time-averaged transport equations of mean and turbulence quantities can be rewritten in

the following form

v • (uci)) = v • +So ,

where _ is a dependent variable representing U i,

(4-6)

e, and uiuj; F,_ is the effective diffusion

coefficient, and So represents the rest of terms that cannot be included into convection and

diffusion terms. The flow domain is divided into a series of control volumes according to the

given grid points. Equation (4-6) is integrated within each control volume and the result is
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expressedin terms of the unknown variableat neighboringgrid points. In a control volume

centeredatgridpoint P (Fig. 4.2), which is surrounded by the neighboring grid points E, W, N

and S, the resulting discretized equation for _ can be written as

ApCI)p = AE_ E + AwCrPw + Aucrpu + AsCI9s + SAV , (4-7)

where the subscript of • indicates the evaluated location; coefficients A s involve U i and F,_, and

depend on the method used to discretize the integrals corresponding to the convection and diffusion

terms in (4-6); S is the average of the source term St, in (4-6) over the control volume, and AV is

the volume of the cell. The averaged source term S is expressed formally as a linear function of

= S c + Sp_p , (4-8)

where Sp is the coefficient of _,, and Sc is the part in S that does not depend on _e (formally).

For the turbulent transport equations governing the Reynolds stresses and dissipation rate e, the

averaged source term S is a strong function of the dependent variable _. One can come up with

different expressions for S e and S c, especially for the complex source terms in the Reynolds-

stress equations. It suffices to say that the way S is partitioned into S c and SpCJp plays a very

crucial role in finding the solution. In general, it is desirable to have a negative S e since a positive

Sp could cause divergence.

In the present modeling of axisymmetric swirling flows, the hybrid scheme (a combination of

the central difference and upwind schemes) described by Patankar (1980) is used. The control

volume shown in Fig. 4.2 is used for all the dependent variables except the mean velocity in the

axial and radial directions U and V. The control volumes for U and V are staggered as shown in

Fig. 4.3a and Fig. 4.3b, respectively.

Since the system of equations (4-6) are nonlinear with coefficients and source terms as

functions of • itself and other dependent variables, the final solution is obtained by iteration.

Under-relaxation iteration technique (Patankar 1980) is used to solve the system of equations.

With the introduction of the under-relaxation parameter cz, (4-7) can be rewritten as,
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A---e-PcIge = A EcI9E + A wCI9w -t-A NcDN + A s _ s + S A V + ( l - ot )A pcIgp , (4-11)
Ol OE

where _, stands for the value of Op from the previous iteration.

A tridiagonal matrix algorithm is used to solve the system of equations (4-11). A line-by-

line iterative approach is adopted in alternating directions within the consecutive stages of the

SIMPLE algorithm as described by Patankar (1980). The details of handling the mean velocity and

pressure variables and associated difficulties can also be found in Patankar (1980).

The implementation of the above numerical procedure to solve a Reynolds stress model is not

a trivial task. For axisymmetric swirling flows, we still have eleven equations for eleven

unknowns: three mean velocity components, six Reynolds stresses, one dissipation rate and one

mean pressure variable. Obtaining the solutions of these highly nonlinear and coupled transport

equations requires a great number of iterations. Intermediate results of a near-wall two-equation

model are used to initialize the iterations, which usually lead to the converged solution faster.

Converged solutions are obtained when the maximum residuals of the mass and momentum

equations in the entire computational domain are less than a small number 6 = 0(10 -J), i.e.,

Rma x = max{R m, R U, Rv} < S , (4-12)

where R o is the sum of the normalized absolute residuals across all the computational nodes,

namely

z_, z_,,(AtO,)+SAV-Apqgp
R,_ = I=E.W.N.S , (4-13)

Fi.'at'io

and • = 1, U and V for the mass equation, momentum equations in axial and radial directions,

respectively. Fin is the mass-flow rate at the inlet, and, di)in takes the inlet axial mean velocity for

the momentum equations. Note that the azimuthal velocity W does not appear in the mass

conservation equation for axisymmetric flows. Therefore, it is not used in the criteria for

convergence (4-12).
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4.2.3 Cases studied Swirling flows with a reverse flow region provide further challenges for

turbulence modeling. To rigorously test our turbulent models, the experiments of Weske and

Sturov (1974) and Kitoh (1991) are selected for model validations. The reverse flow region

observed in Kitoh's ( 1991) experiments starts near the inlet and has a length about 40 diameters of

the pipe. According to the definition of swirl number (4-1), the reference or entrance swirl number

S, is about 1.3 in Weske and Sturov's case and approximately 1 in Kitoh's (1991) case; the

Reynolds number (based on the pipe diameter and averaged mean axial velocity) is about 30,000

and 50,000, respectively. As mentioned before, due to different ways of generating swirl, the

mean azimuthal velocity at the inlet of the pipe is forced-vortex dominated in the Weske and

Sturov's case, whereas it is free-vortex-type in the Kitoh's case. As a result, the azimuthal

velocity profiles evolve differently downstream. In Weske and Sturov's case, the dominated

forced-vortex region reduces and the free-vortex region grows as swirl decays, with maximum

azimuthal velocity shifting to the centerline of the pipe. In Kitoh's case, the free-vortex region is

dominated in the reverse flow region, and initial swirl decay is only associated with free vortex

motion.

4.2.4 Comparisons with data The computational domain is one radius in the radial direction

and 100 diameters in the axial direction. Two sets of grid points, 102 x 86 and 51 z 56 in the

axial and radial directions (Figs. 4.4a - 4.4b), are tested. The first grid shown in Fig 4.4a is

clustered in the inlet region, near-wall region and core (near centerline) region. The second grid

shown in Fig. 4.4b is also clustered in near-wall region, but less dense in the inlet and core

regions. For the NNWRS and NWRS models, both grids give almost the same predictions of the

mean and turbulence flow fields. Thus, only the results from the grid 51 × 56 are presented here.

The numerical results are presented first for the Weske and Sturov's (1974) case and then for

the Kitoh's (1991) case. Fig. 4.5 shows the streamline defined on the (x, r)-plane given by the

NNWRS model. Similar flow pattern given by the NWRS model (no shown) is observed. The

predicted flow pattern indicates no reserve flow occur in the flow region, which agrees with the

experimental observations. Owing to small radial velocity V, the streamlines on (x, r)-plane are
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almostparallelto thecenterline.Thepredictedswirl intensityalongthepipeis comparedwith the

datain Fig. 4.6. Both modelsgive aboutthe sameswirl decayrate,which gradually decreases

alongthepipeandapproachesto aconstantin thedownstream.Thepredictedswirl numberagrees

very well with thedataup to x/D = 20, but it is slightly overestimated at x/D = 50. Further

downstream, no data are available for comparisons.

Figs. 4.7-4.9 compare model predictions of the mean flow and turbulent fields with available

data at measured locations x / D = 5.1, 20 and 50 (note the first measured location, corresponding

to x=O in the computational domain, is x/D=0.35). Both models give almost the same

results. The agreement between the predicted mean axial velocity U and the data is very good

(Figs. 4.7a, 4.8a, and 4.9a). The mean axial velocity in the core region increases with increasing

axial distance (x), and its profile becomes almost uniform across the entire cross-section (except

the near-wall region) in the downstream. The predicted azimuthal velocity W also agree well with

the data (Figs. 4.7b, 4.8b, and 4.9b), although it gives a slightly higher vorticity strength in the

forced-vortex region and its peak location is shifted a little bit toward to the centerline. The peak

value of W decreases due to the decay of swirl along the pipe, and W in the downstream becomes

more uniform (cf. Fig. 4.7b with 4.9b). Both models essentially repeat the experimental findings

that the forced-vortex region shrinks and the vorticity strength weakens as the distance from the

inlet increases, whereas the free-vortex region increases with increasing distance. Predicted flow

skewness near the wall at different measured locations is shown in Fig. 4.10 by plotting U as a

function of W. Very close to the wall, the ratio U/W is a constant, which becomes larger as x

increases.

The agreement between the predicted turbulent quantities (kinetic energy k and root-mean-

squared turbulent fluctuations ur,,,, v,,_, and w,.s) and the data is not very satisfactory (Figs.

4.7c-f and 4.9c-f; note that no experimental data are available at x/D = 20 for k, ur,_,., v,,._., and

wr,,_). Near the inlet, at x ! D = 5.1, the models predict the trends of these turbulent quantities

reasonably well, and the agreement between the model predictions and the data in the core region is
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acceptable(Figs. 4.7c-f). Furtherdownstream,at x/D = 50, the model predictions agree well

with the data in the region covering half the radius from the wall, but are underestimated in the core

region (Figs. 4.9c-f).

For the Kitoh's case, the models are able to capture the recirculation in the core region near

the inlet reported by Kitoh (1991) (Fig. 4.11). However, the length of the reverse flow region

predicted by the models is only about 7 diameters, which is much smaller than the observed length.

This accounts for the major discrepancies between the predicted and measured flow fields

discussed below.

The predicted swirl number along the pipe is compared with the data and the empirical

formula given by Kitoh (1991) (Fig. 4.12). The agreement among them is excellent. Swirl

attenuates exponentially along the pipe with a constant decay rate. Figs. 4.13 - 4.17 compare the

model results with the experimental data at following measured locations, x/D = 12.3, 19.0,

25.4, 32.4 and 39.0 (note that the first measured location, corresponding x--0 in the

computational domain, is x/D = 5. 7). At each location, six plots are presented for the mean

velocities U and W, turbulence kinetic energy k the root-mean-squares of turbulent fluctuations

u,.,,,.,, Vr,,,s, and w,_. Overall, both models give almost the same predictions for mean flow and

turbulent field (Figs. 4.13-4.17). Reverse axial velocity (U < 0) (predicted by the models) is

observed only at x / D = 12.3, the closest location to the inlet (cf. lines in Fig. 4.13a with 4.14a-

4.17a). This is consistent with the flow pattern shown in Fig. 4.11. At each location, the

predicted mean velocities follow the data well in the near-wall region, whereas they depart from the

data in the core region of the pipe with U being overpredicted and W being underpredicted. The

disagreement becomes worse as the location is further downstream. Fig. 4.18 shows the predicted

flow skewness in the near wall region. Again, very close to the wall, U is a linear function of W

with a slope increases as the distance from the inlet increases.

For turbulence kinetic energy k and root-mean-squared turbulent fluctuations u,,,_, v,,,,, and

Wry,., good agreement between the model predictions and the data is found in the near-wall region,
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while discrepancyis observedin the core region of the pipe (Figs. 4.13c-f, 4.14c-f, 4.15c-f,

4.16c-f; 4.17c-f). Both modelsperformconsistentlyin predicting the mean velocitiesand in

predictingtheturbulencevariables.Note thatin thiscasetheturbulentstressesarequiteirregular

in thecoreregiondueto therecirculation.

4.3 Turbulent Developing Flow in

4.3.1

This case is a real challenge for any turbulence model.

a Rotating Pipe

Background Flows in a rotating pipe can be classified as a subset of swirling flow

discussed in the previous section because they are also subject to extra shear strain associated with

the mean azimuthal velocity component. However, swirl intensity does not decay in rotating pipe

flow because angular momentum is continuously imparted into the flow. In the downstream, the

flow approaches to an equilibrium state as the profile of the mean azimuthal velocity approaches to

a rigid-body-rotation distribution.

The rotation effect on a fully-developed pipe flow was studied by White (1964) and

Murakami and Kikuyama (1980). Both studies showed that rotation stabilizes the turbulent flow

field and reduces the flow resistance with a rate increasing as the rotation increases. In other

words, rotation promotes the relaminization of a fully-developed turbulent flow. Experimental

study of the rotation effect on developing turbulent flow in a rotating pipe was carried out by

Kikuyama et al. (1983). They found out that when flow enters a rotating pipe with a uniform

entrance velocity, it is affected by both destabilizing effect created by a large circumferential shear

strain and stabilizing effect due to centrifugal force. Near the entrance, the wall boundary layer is

very thin, and the mean azimuthal velocity has to decrease rapidly from the circumferential velocity

of the wall to zero outside the boundary layer. The flow near the wall is subject to a very high

mean circumferential shear strain, which results in great enhancement of the turbulence production.

Therefore, the near-wall flow in the upstream region is destabilized by the dominated destabilizing

effect. As flow moves to the downstream, the boundary layer becomes thicker and thicker, and the

intensity of the destabilizing effect decreases due to the decrease of the circumferential shear strain.

Far downstream, the flow becomes fully developed, and the fluid inside the rotating pipe rotates as
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velocity Uin. More specifically, the turbulent kinetic energy kin

a rigid body. Since the rigid-body motion does not give rise to additional turbulence production,

the flow is stabilized by the stabilizing effect of centrifugal force. It follows that as the flow

develops along the rotating pipe, the destabilizing effect gives away to the stabilizing effect, and the

flow will pass through a region where both effects are equally important. Hence, the flow in a

rotating pipe is very complicated and provides a severe test for turbulent modeling.

Flow characteristics associated with developing turbulent flows in a rotating pipe are

commonly found in the inlet part of fluid machines, heat exchangers, and cooling system of the

rotors. Therefore, correct modeling of rotating turbulent flows is very important for the design and

development of any rotating machines. Attempts have been made to model developing turbulent

flow in a rotating pipe through the streamline curvature modification with partial success. Most

recently Yoo et al. (1991) used a near-wall Reynolds stress model based on the LRR pressure-

strain model discussed in Section 2 to model the rotating pipe flow. Their model gave fairly good

predictions in comparison with Kikuyama et al.'s (1983) data. In this section, the performance of

the NNWRS model will be assessed by comparing the model predictions with Kikuyama et al.'s

(1983) data and those given by the NWRS model and Yoo et al.'s model.

4.3.2 Numerical considerations The governing equations for rotating pipe flow are the same

as those for swirling flow. At the inlet of the flow domain, the mean axial velocity is determined

from the measurement, and the turbulence quantities are estimated from the inlet mean axial

and normal stresses

UUin, Win, and WWin are specified according to the following formula:

kin = IUi2n , (4-14a)

UUin = kin , (4-14b)

VVin = O. 6kin , (4-14c)

WWin = O.4kin , (4-14d)
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whereI is the measured turbulence intensity at the inlet, the dissipation rate is estimated according

to the formula (4-3), and the turbulent shear stresses are approximated by Boussinesq

approximation. Negligible diffusion conditions in the axial direction are imposed at the outlet of

the computational domain, and axisymmetry condition (4-4) is used at the centerline. No-slip

condition requires that at the moving wall W equal to the circumferential velocity of the pipe

surface W o, and other variables, except mean pressure and dissipation rate, be zero. The

dissipation rate e at the moving wall is given by (4-5). Same numerical procedure discussed in

section 4.2 is adopted here for the calculation of developing flow in a rotating pipe.

4.3.3 Results and discussion The developing pipe flow experiments of Kikuyama et al.

(1983) are used to validate our models. Three sets of experimental data with rotation number

N = W o / U m = 0, 0.5 and 0.83 are available, where U m is the averaged mean axial velocity at the

inlet. The corresponding swirl number S is 0, 0.25, and 0.415, respectively. The entrance

velocity is almost uniform with Reynolds number Re = UmD/v = 6 x 10 4. The turbulence

intensity I at the entrance was about 0.3%. Both mean and turbulence flow quantities were

measured at several locations.

The computational domain again is 0.5D (r)x 100D (x) with a 51 x 56 grid in radial and

axial directions. The grid is found to be able to give grid independent results. Numerical

computations are carried out for three cases with rotation numbers N = 0, 0.5 and 0.83 in

Kikuyama's (1983) experiments. The results for the most severe case, namely N = 0.83 case is

presented below to show the models' ability to predict developing turbulent flow in a fast rotating

pipe. For other two smaller rotation number cases, model predictions are in better agreement with

the measurement. The rotation effects on the turbulent kinetic energy is shown as N increases

from 0 to 0.83.

Model predictions of the mean axial and azimuthal velocity profiles are compared with the

data at the first and last measured locations x / D = 2. 7 and 28. 5 in Fig. 4.19a-4.19b. All three

models give good predictions of the mean velocity profiles, and the results given by the NNWRS

and NWRS models are very close. For the axial velocity U, the NNWRS and NWRS models
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givebetterpredictionsatthefirst measuredlocationx / D = 2. 7 than at the last measured location

x / D = 28. 5. For the azimuthal velocity W, the agreement between the predictions given by the

NNWRS and NWRS models and the data is almost the same at these two locations. Our model

predictions of U and W follow the trend of the data with a small deviation. Yoo et al.'s (1991)

model gives slightly better predictions of U and W in terms of magnitude, but not slope. The

measurements in Fig. 4.19 indicate that the boundary layer becomes more developed downstream,

and the mean axial velocity profile at x / D - 28. 5 is close to that in a fully-developed pipe flow.

These features are essentially captured by all three models.

The comparisons for Reynolds stress components at x / D = 2.7 and x / D - 28.5 are

presented in Figs. 4.20-4.25. Turbulent fluctuations (or normal stresses) and shear stresses

spread out into the core region as the destabilizing effect associated with the circumferential shear

strain decreases and the stabilizing effect due to centrifugal force becomes more dominated (cf.

panel a to panel b in Figs. 4.20-4.25). In the near-wall region, all the models overpredict the

turbulent fluctuations (normal stresses) Urms, Vrms and Wrms, except Urms at x/D = 2. 7 where

the peak value is predicted well by the models (Figs. 4.20 - 4.22). Yoo et al.'s model much more

overpredicts the peak values of the Vrms than the NNWRS and NWRS models do (see Fig. 4.21a

and 4.21b). Overall, the predicted turbulent fluctuations by the NNWRS and NWRS models agree

slightly better with the measurements than those by Yoo et al.'s model do. The components of the

shear stresses are generally overpredicted by the NNWRS and NWRS models (Figs. 4.23 - 4.25)

except for vw at x/D = 28.5 and uw at x/D = 2.7 (Figs 4.24b and 4.25a). The

performance of Yoo et al.'s model varies depending on the individual component and the measured

location. It gives good predictions of each shear strain component at one location, but either

overpredicts or underpredicts the same component at the other location.

To show how the mean velocity profiles evolve along the pipe from the upstream to the

downstream, we plot the axial and azimuthal velocity components at four different measured

locations: x/D = 2.7, 9.7, 15.5 and 28.5 in Figs. 4.26a - 4.26b. Note that only the results of
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theNNWRS modelandthemeasurementsarecompared.Both theaxialandazimuthalvelocities

havesimilarprofiles at thesefour differentlocations. As theflow movesto thedownstream,the

boundarylayer thicknessincreasesandthe variationsof U and W across the boundary layer

become less rapid. The NNWRS model follows the trends of the measurements quite well but

with a small offset. Distributions of the turbulent kinetic energy k at the same locations are shown

in Fig. 4.26c. As expected, the turbulent kinetic energy k spreads out into the core region

resulting from the increase of the stabilizing effect and the decrease of the destabilizing effect in the

downstream. The NNWRS model replicates this observed phenomenon, but it overestimates the

maximum kinetic energy and underestimates the spreading rate.

The effects of rotation number N on the mean axial and azimuthal velocity profiles at the last

measured location x/D = 28.5 are shown in Figs. 4.27a - 4.27b. The NNWRS model gives

better predictions for the moderate rotation number N = 0.5 case than for the high rotation number

N = 0.83 case. Both the measurements and model predictions show that the mean axial and

azimuthal velocity components far away from the inlet are not very sensitive to the rotation rate.

Finally, the effects of rotation number N on evolution of the turbulent kinetic energy k are shown

in Fig. 4.28. At the upstream location x / D = 2. 7, the NNWRS model shows an increase of k

with the rotation rate. This is because more turbulent production associated with the more intense

shear strain is generated as rotating rates increases. At x / D = 15. 5, the total kinetic energy for

different rotation numbers are close to each other since the stabilizing and destabilizing effects are

well balanced there. The drop in k at the downstream location x/D = 28.5 indicates the

stabilizing effect there is dominated, resulting in the decrease of the turbulent kinetic energy with

increasing rotation rate. These predictions are consistent with the experimental measurements

given by Kikuyama et al. (1983).

4.4 Fully-Developed Turbulent Flow in a Rotating Channel

4.4.1 Background For fully developed flow in a spanwise rotating channel with constant

angular velocity _ (Fig. 4.29), the system rotation gives rise to two additional body forces:
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Coriolis force andcentrifugalforce. However,only theCoriolis force is dynamically important

becausethecentrifugalforcetermcanbeabsorbedin theeffectivepressure

Peff = p-lp(nr) 2 , (4-15)

where P is the stationary pressure and r denotes the distance from the rotating axis. The strength

of the Coriolis force can be measured by a rotation number

Ro- 21_lh 2l_lh, or Ro r - , (4-16)
U m ur

which is the relative strength of the Coriolis force to the inertial force. Here U m is the bulk mean

velocity, h is the half the channel width, and uf is the global friction velocity.

The flow under consideration is driven by an imposed mean pressure gradient,

dPeff _ pu 2

dx h
(4-17)

in the streamwise (x) direction. Thus, the turbulence can be treated as homogeneous in the

streamwise (x) and spanwise (z) directions. In other words, the mean properties and turbulence

statistics vary only in the transverse (y) direction. With the use of effective pressure, the

governing equation for the mean flow is identical to that for non-rotating channel flow, i.e.,

ldPeffd( dU )- t_---_ (4-18)
p dx dy dy

It follows from (4-17) and (4-18) that

u_ = U_s + u , (4-19)

where U_s and Urp denote the local friction velocity at the suction side and pressure side,

respectively. When _ > 0 (< 0), y / h = +1 is the suction (pressure) side and y / h = -1 is the

pressure (suction) side. Without system rotation, the mean flow is symmetric with respect to the

(x, z)-plane at y = 0 and u r = Urs = Urp.
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In the transport equations for the individual Reynolds stress components, the production

terms associated with mean shear and rotational stress generation are

I ovj ovalPij =- UiUk _ + UjUk--!Oxk j ' (4-20a)

Gij = -2_k.[UjUm"_eikm + uiumejkm ] , (4-20b)

respectively. The components of Pij and Gij are given in Table 4.3. Since Gkl vanishes, no

additional turbulence energy is generated directly through the rotational production term Gij.

Pioneering work on fully developed flow in a channel rotating about a spanwise axis was

carried out by Johnston et al. (1972). Their measurements covered a wide range of rotation

numbers, Ro, from 0 up to 0.21 with Reynolds number Re ranging from 11500 to 35000. Here

the Reynolds number is defined based on the bulk mean velocity U,,, and the channel width 2h as

Re = 2Utah / o. The Coriolis force was found to affect both local and global stability of the flow.

Three stability-related phenomena caused by the Coriolis force were observed or inferred: (I) it can

change the streak bursting rate in the wall-layers; (2) it can suppress the turbulence production near

the suction (stabilized) side; (3) it can develop a large-scale roll cell on the pressure (destabilized)

side.

Theoretical and experimental studies were performed by Nakabayashi and Kitoh (1996) on

low-Reynolds-number, fully developed turbulent flow in a rotating channel. Low-Reynolds-

number flow is found to be more strongly affected by the Coriolis force than high-Reynolds-

number flow. The Coriolis force affects the logarithmic layer and the core region. By dimensional

analysis, they deduced that Reynolds number Re r = urh/o and Ro are the two parameters

determining the overall flow structure. The ranges of these two parameters in the experiments they

investigated are 28 < Re, < 155 (1700 < Re < 10000) and 0 < Ro < 0.055.

Laboratory investigations of turbulence in rotating reference systems are more difficult to

accomplish than most other experiments, simply because the flow apparatus has to be mounted on

a rotating turntable. While fully developed flows are relatively difficult to realize in the laboratory,
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especially in a rotating system, such flows have been attractive objects for numerical study in the

past two decades. Kim (1983) was the first to perform large-eddy simulations (LES) for rotating

channel flow with a moderate rotation number Ro = 0.068, which revealed how the Coriolis force

introduced by the system rotation can stabilize or destabilize turbulence on different sides of the

plates. Miyake and Kajishima (1986) also carried out large-eddy simulations for rotation number

up to 0.2. They presented various statistical turbulence quantities and concluded that in the near-

wall region, the Coriolis force enhances sweep and ejection on the pressure side, while reduces

them on the suction side. However, the rather course grid used made their results less reliable and

the conclusions less convincing.

Kristoffersen and Anderson (1993)performed direct numerical simulations (DNS) of fully-

developed rotating channel flow for rotation number Ro up to 0.50 at Re = 5800. Their

simulation results showed that with increasing rotation the damping and augmentation of

turbulence along the suction side and pressure side, respectively, become more significant,

resulting in highly asymmetric profiles of mean velocity and turbulent Reynolds stresses. The

mean velocity profile exhibits an appreciable region with slope 2f_, in accordance with the

experimental observations of Johnston et al. (1972). At Ro = 0.50 the Reynolds stresses vanishes

in the vicinity of the suction (stabilized) side. Because the gird they used, 128 x 128 x 128, is find

enough to resolve all essential scales of the low-Reynolds-number turbulence, their rather complete

data become very useful to verify turbulent models for rotating turbulent flow.

A Reynolds stress model is required to model rotating channel flow because of high

anisotropic turbulence caused by the Coriolis force. Second-order turbulence models have been

used to predict rotating channel flow recently. Launder et al. (1987) and Shima (1993) obtained

good agreement with the experimental results of Johnston et al. (1972) and large-eddy simulations

of Kim (1983). Tselepidakis (1991) made an attempt to model the fully developed rotating channel

flow studied by Kristoffersen and Anderson (1993). Very good agreement was obtained with low

rotation number Ro = 0.05. However, no results were reported for higher rotation number due to
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numericalstability. Hesuggestedthatthe problemcould beovercomeby reconstructinga new

dissipationratetensoreij.

4.4.2 Results and discussion In the present study, the cases studied by Kim (1983) and

K.ristoffersen and Anderson (1993) are selected to test our near wall models' ability to predict fully

developed channel flow with spanwise rotation. In Kim's case, the rotation number is Ro = 0.068

(Ror = 1.47) and the Reynolds number is Re c = 2Uch/v = 13800 (where U c is the centerline

mean velocity) ( Rer = 640); in Kristoffersen and Anderson's case the rotation number Ro(Rot)

varies from 0 to 0.50 (7.55) at Reynolds number Re = 5800 (Re r = 194). The iterative scheme

for the fully developed channel flow in Section 3 is adopted here for the calculations of the fully

developed flow in a rotating channel.

The numerical results are presented first for Kim's (1983) case, and then for Kristoffersen

and Anderson's (1993) case. Note that the channel in these two cases rotates in opposite

directions, i.e. f2 > 0 in Kim's case, whereas f2 < 0 in Kristoffersen and Anderson's case.

Accordingly, y/h =-1 is the pressure side and y� h = +1 is the suction side in Kim's case,

whereas y� h =-1 is the suction side and y/h = +1 is the pressure side in Kristoffersen and

Anderson's case. The global wall friction velocity ur is used to normalize the flow variables when

variations across the entire channel -1 < y / h < +1 are presented, whereas the local friction

velocities urp and Urs are used in the scaling of computed results whenever the inner coordinate

y+ near the pressure and suction sides, respectively, labels the abscissa. In the computations, two

damping functions, (2-29a) for Kim's case and (2-29b) for Kristoffersen and Anderson's case, are

used in the NWRS model due to the significant difference in Reynolds numbers, whereas same

damping function (2-33) is used in the NNWRS model for both cases.

Figs. 4.30a - 4.30b compare the predicted mean velocity with the LES data given by Kim

(1983) in wall coordinates. The LES data show that the normalized mean velocity U ÷ lies above

and below the semi-logarithmic law U ÷ = 2.51ny + + 5.5 in the region near the centerline on the

suction side (Fig. 4.30a) and pressure side (Fig. 4.30b), respectively. On the suction side
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(y / h = +1), the wake component is increased due to the decrease of local friction velocity Urs (i.e.

Urs < ur). On the pressure side (y/h =-1), the increased local friction velocity (i.e. Urp > ur)

suppresses the wake component in the velocity profile. Both the NNWRS and NWRS models are

basically able to capture these features; the NWRS model is in better agreement with the LES data

than the NNWRS model does.

Fig. 4.31a plots the normalized mean velocity U/U c distribution between the plates. The

model results are essentially identical and follow the LES data quite well. The data and the model

results show a slight asymmetry in the mean velocity profiles due to the presence of rotation. Both

models give about the same shear stress uv predictions as shown in Fig. 4.31b. Fig. 4.31c shows

that the peak value decreases on the suction side (y / h = +1) and increases on the pressure side

(y/h =-1) in comparison with the non-rotating case (no shown). Note that although the

rotational production term Gij does not have a direct contribution to the generation of turbulent

kinetic energy, it affects the mean shear production term Pij through changing the turbulent stress

distributions and the mean velocity gradient, resulting in the redistribution of the kinetic energy k +

between the plates. The NWRS model predicts a much higher peak value of k + on both sides

compared with the NNWRS model. Away from the walls, both models give almost the same

predictions, which are slightly overestimated on the suction side and underestimated on the

pressure side. In Fig. 4.3 ld, the LES shows that in the core region, turbulence is more isotropic

on the pressure side than on the suction side. Both models also show that turbulent fluctuations

are more isotropic (i.e. + + and +lgrms, Vrm s Wrm s are closer to each other) on the pressure side.

+

However, except for Urms on the pressure side, model predictions of turbulent fluctuations do not

agree well with the LES data. Overall, the models seem to have the ability to replicate the rotation

effect, but they are less responsive to the influence of the rotation. Further verification for the

models is needed since in this case the rotation number Ro = 0.068 is relatively small compared

with its high Reynolds number Re c = 13800.
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According to NakabayashiandKitoh (1996),with the samerotation number,the rotation

effect is moreinfluential in low-Reynolds-numberflow thanin high-Reynolds-numberflow. To

furtherexaminetherotationeffectin themodel,computationsarecarriedout for thelow-Reynolds-

numbercaseof KristoffersenandAndersonwith rotation numbersRo = 0, 0.01, 0.05, 0.I0,

0.15, 0.20, and 0.50 (these values correspond to Ro_ --0, 0.15, 0.755, 1.51, 2.265, 3.02, and

7.55, respectively). The calculation for rotation number Ro = 0 is to test the code and provide a

reference to identify the rotation effects (Fig. 4.32-4.33). The NWRS and NNWRS models repeat

their performance in fully developed channel flow without rotation. Note that all flow variable

profiles are symmetric about the center plane y = 0 (Fig 4.33). In the following presentation, the

mean velocity profiles are shown in the wall and global coordinates for each rotation number,

whereas the turbulence quantities are plotted only in the global coordinate.

Figs. 4.34a - 4.34b plot the mean velocity profiles in the wall coordinates for Ro = 0.01.

According to the DNS, the effect of the Coriolis force at this low rotation number can be

considered as a small perturbation to the non-rotating case, and the velocity profiles in the core

region on different sides deviate slightly from the log law U ÷ = 2.5 In y÷ + 5.5. The deviation on

the pressure side is more noticeable than that on the suction side. Our model predictions agree very

well with the DNS data on the suction side (Fig. 4.34a). On the pressure side, the NNWRS model

predicts a slight larger mean velocity in the core region compared with the DNS data, whereas the

predictions given by the NWRS model are closer to the DNS data. Predicted mean velocity and

turbulence quantities are further compared with the DNS data in the global coordinate (Fig. 4.35).

The agreement between our model predictions and the DNS data is very close to that in the non-

rotating case (cf. Fig. 4.35 with its counterpart Fig. 4.33). The weak rotation in this case only

causes a small perturbation from the non-rotating state.

The predicted mean velocity profiles and the DNS data for Ro = 0.05 are shown in Fig.

4.36. The DNS data show that the rotation effect becomes more pronounced, namely the wake

component is appreciably enhanced on the suction side and is eliminated on the pressure side. This
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is accompaniedby therathersignificantdecreaseandincreaseof the wall fiction velocity on the

suction andpressuresidesrespectively. The velocity profiles predictedby the NNWRS and

NWRS models,however,only slightly deviatefrom the law of the wall. Comparedto their

predictionsfor Ro--0.01 (cf. Fig. 4.36 with Fig 4.34), the models are not sensitive to the

increase of rotation. This insensitivity is also observed when mean velocity and turbulence

quantities are plotted in the global coordinate (compare the model predictions in Fig. 4.37 with Fig.

4.35). The DNS data show that the rotation already has a significant influence on the turbulent

field at this rotation number. The peak of the shear stress u--_ increases on the pressure side but

decreases on the suction side (cf. Fig. 4.37b with Figs. 4.33b and 4.35b). This is because the

rotational production term Gij (see Table 4.3) in the u-_-transport equation is positive near the wall

and therefore tends to reduce the negative value of u--_ on the suction side and increase it on the

pressure side. Away from the walls, the viscous effect is negligible, and the shear stress profile

becomes linear (see (4-18)). The peak value of the turbulent kinetic energy drops on the suction

side (y/h =-1) and rises on the pressure side (y/h = +1) quite significantly (Fig. 4.37c); the

peaks of turbulent fluctuations Vrms+ and Wrms+ in the vicinity of the suction side tends to disappear

(Fig. 4.37d). The models do not predict such features. The rotation number Ro = 0.05 in this

case is close to Ro =0.068 in Kim's case. Comparing the LES data in Figs. 4.30-4.31 and the

corresponding DNS data in Figs. 4.36 - 4.37, we find that the rotation effect is more influential in

this low-Reynolds-number case (Rer = 194) than in the high-Reynolds-number Kim's case

(Re r = 640), which is in accordance with Nakabayashi and Kitoh (1996).

As the rotation number increases up to Ro = 0.20, comparisons between the models' results

and the data are qualitatively similar to those for Ro = 0.05 with some quantitative differences.

The comparisons for mean velocity profiles in the wall coordinates are presented in Figs. 4.38,

4.40, and 4.42 for rotation number Ro=0.10, 0.15 and 0.20, respectively, whereas those for

turbulence quantities can be found in Figs. 4.39, 4.41, and 4.43.
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At Ro = 0.50, the difference in the mean flow and turbulent field on the suction side and

pressure side becomes striking. The DNS shows that the mean velocity profile is close to the

linear law U+= y+ on the suction side, whereas an anomalous behavior is observed on the

pressure side: the profile diverges from the linear law at y+ --5. The NNWRS and NWRS

models seem to be able to capture these features, although the predicted profiles deviate from the

data. Unlike those lower rotation number cases (Ro<0.5) (see Figs. 4.34b, 4.36b, 4.38b,

4.40b, and 4.42b), the difference in the predicted mean velocity profiles is quite large on the

pressure side in this case. The NWRS model results are in a better agreement with the data. In the

global coordinate (Fig. 4.45a), a linear region in the DNS mean velocity profile is observed. Both

models are able to predict this characteristic flow region, though the predicted slope is smaller than

the expected 2.Q as indicated by the data. The predicted shear stress u-_ shows a better agreement

with the data in this case than in all lower rotation number cases except for Ro = 0.01 case (cf.

Fig. 4.45b with Figs. 4.37b, 4.39b, 4.41b, and 4.43b). More pronounced rotation effects are

also observed in the kinetic energy and turbulence fluctuations at Ro = 0.50 (Figs. 4.45c - 4.45d).

According to the data, on the suction side, the strong rotation effect has eliminated the peaks of the

kinetic energy k + and the normal stress in the wall normal direction v,_s+ , and tends to eliminate

+ is dominant+ and + In the core region, Vrm sthe peaks in the other two normal stresses Urm s Wrm s.

among the three normal stress components. The NNWRS and NWRS models have shown a more

significant rotation effect at Ro = 0.50 in comparison with the lower Ro cases. More asymmetry

due to rotation in the predictions is observed at this rotation number. However, the rotation effect

predicted by the models are still much weaker than that shown in the DNS. For instance, the peaks

+ + and +in the kinetic energy k + and normal stresses Urns, Vrms, Wrn s near the suction side still

remain.

To show more clearly the variations of the predicted mean velocity as the rotation rate

increases, we plot the mean velocity profiles predicted by the NNWRS model for different Ro in

the wall coordinates together in Fig. 4.46a and Fig. 4.46b. The mean velocity profiles on the
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suction side lie above the profile for the non-rotating case in the semi-logarithmic region. The

profile for small Ro still exhibits a logarithmic region. As Ro increases, the profile has a more

laminar-like shape and approaches the linear law U + = y+. Correspondingly, the mean velocity

profiles on the pressure side lie below the profile for Ro = 0. These profiles still exhibit the

characteristic turbulent semi-logarithmic shape, but with a slope that decreases as Ro increases. At

the highest rotation rate ( Ro = 0.50), an anomalous behavior is observed.

Finally, Fig. 4.47 shows the effect of rotation on local wall friction velocities Urs and urp.

The NNWRS and NWRS models follow the trend indicated by the DNS data, namely the wall

friction velocity decreases on the suction side and increases on the pressure side as the rotation rate

increases. The model results, however, show a weaker rotation effect on the wall friction

velocities.

4.5 Concluding Remarks

The performance of the NNWRS model in predicting complex turbulent flow with swirl and

rotation is examined in this section. More specifically, we apply the model to swirling pipe flow,

developing rotating pipe flow, and fully developed channel flow with spanwise rotation and

compare the model results with available experimental and LES/DNS data. The complexity of

these flows provides severe tests for our models. In swirling pipe flow, the NNWRS model gives

reasonable predictions for flow with no reverse flow region, whereas for flow with a reverse flow

region, the model predicts a much smaller reverse flow region than that observed in the

experiments. In developing flow along a pipe rotating around its axis, the NNWRS model is able

to capture the flow pattern subject to both destabilizing effect resulting from the mean

circumferential shear strain and stabilizing effect due to the centrifugal force. In the fully

developed channel flow with spanwise rotation, at low rotation rate, the model predictions agree

with the LES/DNS data. As the rotation rate increases, the model underestimates the rotation

effect, which causes the augmentation and damping of the turbulence along the pressure and

suction sides, respectively. The NWRS model behaves similarly as the NNWRS model in all the
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cases considered. This implies that the near-wall modifications in the turbulence models become

less important for complex flows such as swirling and rotating flows. Further improvement on the

modeling is needed for a better agreement with the experimental data and the direct numerical/large-

eddy simulations, in particular in the reverse flow region of the swirling pipe flow and semi-

logarithmic region of the rotating channel flow where the Coriolis force is important. In the next

section, the NNWRS model is further examined for turbulent flows with complex geometry.
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Table4.1 Comparisonof shear strain rates in swirling and parallel flows

Sij Swirling flow

3U
s_

&

3V

Srr Or

1 _c)W "

soo 71,-g-g+ v I

Sx r 1 ( 3U +

sro i(lav+aw
2 k,r O0 cgr r

Sx ° 1 ( 1 o_U

Parallel flow

OU

Ox

OV

3r

V

r

Table 4.2 Swirling flow characteristics

Forced
vortex

Tangential

velocity

W=C*r

Angular

velocity

O)= w /r

Vorticity

2O)

Free
Vortex w = c / r 0

117



Table 4.3 Production terms in fully developed channel with spanwise rotation

ij 11 22 33 12

Pij -2u-vaU / v3y 0 0 -v-vc)U I o_y

4_u-7 -4D.uv 0 -2ffZ(uu - vv)

Note: P6 and Gij are the production terms due to mean shear and rotation, respectively, and the

expressions are:

Pij UiUk ax k C)Xk _]
= -- __ + UjU k ,

and

Gij = -2£"2k[U-_meik m +UiUmejkm].
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Fig. 4.1 Typical azimuthal velocity profile in a swirling pipe flow.
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Fig. 4.2 Control volume centered at grid point P.
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Fig. 4.3b Control volume for mean velocity in the radial direction (V).

120



]

oA

o
I .... I,,,,I .... ll,,,I,,,, I

(¢

I'''ll,,,,I,L*ll**,,lll,,I

Z/D

_)

121



D.B-
PA,

122



I,_,*l,llllll_*l**_l,,ll I

123



10]

10o_

__S
So

10-1

10-2

'1'''1 't'' I'''

O Weske & Sturov (1974)
...... NWRS
-- NNWRS

I I I I ' ' _ I I J _ I , , i I , , J

0 20 40 60 80 100
x/D

Fig. 4.6 Comparison between the predicted and the measured swirl number for

Weske and Sturov's (1974) case.
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Fig. 4.7b Comparison between the predicted and measured mean azimuthal velocity profiles at

measured location x / D = 5.1.
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Fig. 4.7f Comparison between the predicted and measured turbulent fluctuation in azimuthal
direction at measured location x / D = 5.1.
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direction at measured location x / D = 50.0.

131



2_

1.5-

Fig. 4. I0 Flow skewness in the near-wall region.

132



@..2

0

Kr,
'P-I

.r._

el

JRiiiJlilJJllJlJlll,tljij

(i)

Di

Di

D4

OJ

D

I L L , , I , , , , I , , , , I I I I I

D I 1_ 11 I

z/D

(b)

133



101

10o

S

10-1

' ' ' _ ' I(itoh(_9_l)' ' I ' ' ' , ' ' '
..... S =Soexp(-(13(x-xo)/D); 13=0.02362;

empirical formula given by Kitoh (1991)
........ NWRS
--. NNWRS

10-2 , , , I , , , I , , , I , , , I , ,
0 20 40 60 80 100

x/D

Fig. 4.12 Predicted swirl number for Kitoh's (1991) case and its comparison with the experimental

data and the empirical formula given by Kitoh (1991).
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Fig. 4.13b Comparison between the predicted and measured mean azimuthal velocity profiles at
measured location at x / D = 12.3.
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Fig. 4.13d Comparison between the predicted and measured turbulent fluctuation in the axial
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Fig. 4.13f Comparison between the predicted and measured turbulent fluctuation in azimuthal
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measured location x / D = 19.0.
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measured location x / D = 39.0.
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Fig. 4.26a Comparison between the predicted and measured axial mean velocity at four different
axial locations.
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Fig. 4.30 Comparison between predicted and LES mean velocity profiles in wall coordinates on (a)

, y+suction side ( U ÷ = U / urs = (1 - y)u,rs / v ) and (b) pressure side ( U ÷ = U / Urp,
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Fig. 4.31 Comparison between model predictions and LES data across the channel for (a) mean
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Fig. 4.33 Comparison between model predictions and DNS data across the channel for (a) mean
velocity; (b) turbulent shear stress; (c) turbulent kinetic energy; and (d) turbulent fluctuations.
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Fig. 4.35 Comparison between model predictions and DNS data across the channel for (a) mean
velocity; (b) turbulent shear stress; (c) turbulent kinetic energy; and (d) turbulent fluctuations.
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Fig. 4.36 Comparison between predicted and DNS mean velocity profiles in wall coordinates on

(a) suction side and (b) pressure side for Ro = 0.05.
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Fig. 4.37 Comparison between model predictions and DNS data across the channel for (a) mean

velocity; (b) turbulent shear stress; (c) turbulent kinetic energy; and (d) turbulent fluctuations.
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Fig. 4.38 Comparison between predicted and DNS mean velocity profiles in wall coordinates on
(a) suction side and (b) pressure side for Ro = 0.10.

175



25

20-

15-

U +

10-

5-

0

[,,,I,,,,I,ilJJill_ /

-0.5 0 0.5 1

y_

(a)

1.5! .... , .... , .... J .... !

0.5

ffq+O

-1 -0.5 0 0.5 i

y/h

(b)

176



J _ I i I i I I I I i I 1 _ i I ¢ I ¢ I

5 4._ Ro = 0.10 _•

1 o Kristoffersen & Andersson (1993) _5
...... NWRS

k + 4 t ------- NNWRS _,/_o,-

-1 -0.5 0 0.5

y_

(c)

.... ' .... ' .... L
3-_ o Kristoffersen & Andersson (1993) /_-

-_ ...... NWRS _] o_

2.5-_ __ NNWRS _ _--

-I + W_'ms _, ",

1.2-],,-_ firms \ _Z"_'.J 2-

-1 -0.5 0 0.5 !

y/h

(d)

Fig. 4.39 Comparison between model predictions and DNS data across the channel for (a) mean
velocity; (b) turbulent shear stress; (c) turbulent kinetic energy; and (d) turbulent fluctuations
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Fig. 4.40 Comparison between predicted and DNS mean velocity profiles in wall coordinates on

(a) suction side and (b) pressure side for Ro = O.15.
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Fig. 4.41 Comparison between model predictions and DNS data across the channel for (a) mean
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Fig. 4.42 Comparison between predicted and DNS mean velocity profiles m wall coordinates on

(a) suction side and (b) pressure side for Ro = 0.20.
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Fig. 4.43 Comparison between model predictions and DNS data across the channel for (a) mean
velocity; (b) turbulent shear stress; (c) turbulent kinetic energy; and (d) turbulent fluctuations.
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Fig. 4.44 Comparison between predicted and DNS mean velocity profiles in wall coordinates on

(a) suction side and (b) pressure side for Ro = 0.50.
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Fig. 4.45 Comparison between model predictions and DNS data across the channel for (a) mean

velocity; (b) turbulent shear stress; (c) turbulent kinetic energy; and (d) turbulent fluctuations.
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5. VALIDATION AGAINST TURBULENT FLOWS WITH

COMPLEX GEOMETRIES

5.1 Introduction

The NNWRS model is developed for complex turbulent flows, in particular for flows with

complex geometry. Two-dimensional flow over a backward-facing step and three-dimensional

flow in a square duct are typical complex flows resulting from the presence of multiple walls.

Complex flow phenomena such as recirculation, reattachment, and boundary layer re-development

to a fully-developed state are observed in the plane backward-facing step flow (Fig. 5.1). These

flow features all result from the existence of the step. In a straight square duct (Fig. 5.10), the

local flow structure is dominated by a transverse mean flow commonly known as secondary flow

of the second kind induced by the presence of the comers. The mean transverse secondary flow

consists of eight streamwise vortices, two counter-rotating in each comer, with the flow toward the

corners from the duct center along the comer bisector, and toward the duct center along the

bounding wall and wall bisector. In the following sections, two-dimensional backward-facing step

flow and three-dimensional flow in a square duct are used as the testing cases to verify the

NNWRS model's ability to predict flows with complex geometry.

5.2 Two-Dimensional Flow Over a Backward-Facing Step

5.2.1 Background Numerous attempts have been made to model two-dimensional

backward-facing step flow by using various Reynolds stress models. Errors up to 50% - 100%

between the model predictions of skin friction coefficient Cf = 2"cw / (pU 2 ) and available data are

often observed (So et al. 1988; Ko and Durbin 1994; Lien and Leschziner 1994). Here, U o is the

bulk mean velocity at the entrance, p is fluid density and "rw is the wall shear stress. One finding

in the prediction of CT by near-wall second-order models employing wall normals in the near-wall

corrections is that the models tend to overshoot Cf in the adverse pressure gradient region after

the reattachment point. However, no such overshooting is observed in predictions given by those

high-Reynolds-number models invoking wall functions to satisfy the boundary conditions (So et
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al. 1988)andDurbin'sReynoldsstressmodel(1993). In Durbin'smodel,redistributivetermsin

theReynoldsstressequationsaremodeledby anelliptic relaxationequationto representstrongly

non-homogeneouseffects producedby the presenceof walls, and no damping functions are

needed(hereafterDurbin's model is referred to as the elliptic-relaxation model). Thus, the

overshootingof CU persisting in the near-wall Reynolds models is speculated to be caused by the

use of wall normals in the near-wall correction terms. Since no wall normal is used in the

NNWRS model, the comparison between the NNWRS model predictions of Cf and those given

by the NWRS model will shed light on whether the use of wall normals is responsible for the

overshooting of CU in the near-wall turbulence modeling.

5.2.2 Numerical implementations and boundary conditions The TEACH code and

corresponding numerical procedures discussed in Section 4.2.2 are adopted for the current two-

dimensional numerical computations in Cartesian coordinates. Only half of the expanded channel

is considered since the flow is symmetric about the centerline. The computations are conducted in

a domain 50h x 6h shown in Fig. 5.2 with a grid distribution 91 x 81 in the streamwise and

transverse directions, respectively. The grid is clustered at the inlet and the near-wall regions.

Finer grid 131 x 151 was tested to give essentially identical results. Thus, grid 91 x 81 is used in

the final computations. The convergence criterion is again given by (4-12).

The model equations for two-dimensional backward-facing step flow are elliptic-type

equations. To solve these equations in the (x, y)-plane, boundary conditions at the inlet and outlet

of the computational domain, along the centerline of the expanded channel and the step walls are

required. The mean velocity and the turbulent statistics at the inlet (x -- 0) are provided by the

available DNS data. Negligible diffusion boundary conditions are specified at the outlet

(x = 50h), i.e.

o32(U, V, uu, vv, ww, uv, E)=0 (5-1)
o3x 2

Along the step walls all the variables are zero according to the no-slip condition except the

dissipation rate, which is given by
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)w

along the vertical wall (x = 0) and by

along the horizontal wall (y = 0).

which yield

o_(U, uu, vv, ww , e ) = O ,and V=uv=O
Oy

(5-2)

(5-3)

Symmetry conditions are applied at the centerline (y = 6h)

(5-4)

5.2.3 Cases studied and comparisons with data Both numerical and experimental study has

been carried out for the same backward-facing step flow (Le et al. 1993; Jovic and Driver 1993)

with Re h = Uoh/1) = 5,100 and the expansion ratio r_/h = 1.2, where 6 is the boundary layer

thickness and h is the step height. Detailed distributions of skin friction coefficient Cf, wall

pressure coefficient Cp =2(P-Po)/pU2o (where P is the wall static pressure along the

streamwise direction and Po is the wall static pressure at x = 0), mean velocity U, kinetic energy

k, and turbulent stresses Urms, Vrms, Wrms, and uv at several downstream locations were given.

The same case is used to test our models.

Fig. 5.3 shows the flow pattern predicted by the NNWRS model. As a result of flow

separation, immediately after the step, a primary cell and a corner cell rotating in opposite

directions are generated. Further downstream, the flow develops into a plate boundary layer flow.

The NWRS model predicts a similar flow pattern (no shown). Predicted friction coefficient Cf,

DNS results and measurements are compared in Fig. 5.4. The length between two zero crossing

points of Cf is the recirculation region in the streamwise direction. The first zero crossing point

signifies the beginning of the reverse flow. The corner cell locates between the step corner and the

first zero crossing point of Cf. The NWRS model predicts the length of the corner cell is about

2h, which agrees with the DNS prediction, whereas the NNWRS model gives a slightly smaller
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length. Durbin'selliptic-relaxationmodelpredictsthesmallestcomercell lengthamongthethree

turbulentmodels.Thesecondzerocrossingpointof Cf is the mean reattachment point defined as

the location of zero wall shear stress. The DNS and measurements show the flow has a

reattachment length of 6h, which is also predicted by both the NNWRS and NWRS models. The

elliptic-relaxation model, however, overpredict the reattachment length, which is 6.6h. The

maximum friction coefficient (ICfl) in the reverse flow region is predicted well by the NNWRS

and NWRS models, but it is underpredicted by the elliptic-relaxation model. After the reattachment

point, the elliptic-relaxation model follows the DNS data and measurement quite well, although

underpredicting Cf slightly. The overshooting of Cf in Reynolds-stress models mentioned by So

et al. (1988) is also observed in the NNWRS model. This indicates that wall normals used in the

near-wall corrections in the NWRS model are not the culprit for the overshooting. Further

investigation is needed to find out the cause for this peculiar overshooting behavior in the Reynolds

stress models.

Fig. 5.5 compare the wall pressure coefficient Ce. Model predictions and data all show the

wall pressure along the horizontal step wall first slowly decreases from Po (indicating a favorable

pressure gradient), and then rapid increases at some location in the recirculation region (indicate an

adverse pressure gradient). It continues to increase and approaches to a constant as the boundary

layer redevelops in the downstream. Contrary to their prediction of Cf, the predictions of Cp

given by the NNWRS and NWRS models agree very well with both DNS data and measurements,

whereas the elliptic-relaxation model underpredicts Cp in adverse pressure gradient region.

Fig. 5.6 shows the comparison of normalized mean velocity U+= U/ur in the wall

coordinate y+ = ury / v at three downstream locations after the reattachment point: x / h = 10, 15,

and 19. The log-law and linear law are also included for comparison in the figure. The non-

dimensional mean velocity profiles at these locations are predicted well by the elliptic-relaxation

model, but underestimated by the NNWRS and NWRS models. This is consistent with the model

predictions of the friction coefficient Cf after the reattachment (Fig. 5.4). The DNS data and
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measurementsshowthatthe log regionin thevelocityprofile at locationx / h = 10 is very small

and the intercept with U+-axis is also much smaller than 5.4 (Fig. 5.6a). As the flow develops

further downstream, the length of logqaw region increases and U + becomes closer to the log law

(cf. Fig. 5.6a with Figs. 5.6b and 5.6c). The deviation of the velocity profile U + from the log-

law may be due to the strong streamwise adverse pressure gradient (Nagano et al. 1991). It may

also result from the non-equilibrium effects persistent after the reattachment. Further downstream,

the adverse pressure gradient decreases, and the mean velocity profile U + becomes closer to the

logqaw.

The performance of the models are further examined by comparing the model predictions of

the streamwise mean velocity U and turbulent statistics (including kinetic energy k, normal

stresses Urms, Vrms, Wrms, and shear stress uv) with the DNS data and measurements in the global

coordinate at locations x / h = 4, 6, and 10 (Figs. 5.7-5.9). Note that the location of the y axis in

these figures is shifted for different measured locations. Fig. 5.7 plots the mean velocity profile

U / Uo versus y / h at x / h = 4, 6, and 10. It shows that U experiences rapid changes in the

near-wall region and approaches a constant as y ! h > 2. Unlike their predictions of U + in the wall

coordinate y+, the NNWRS and NWRS models give better predictions of U / Uo in the global

coordinate than the elliptic-relaxation model does (cf. Fig. 5.7 with 5.6). In the near-wall region,

all three models predict a negative U at x / h = 4, which agrees with the data. This confirms that

location x / h = 4 indeed is inside the reverse flow region determined from the friction coefficient

Cf (see Fig. 5.4). At x / h -- 6, the elliptic-relaxation model predicts a small negative U in the

inner layer, whereas the NNWRS and NWRS models predict a small positive U there. This

indicates that the reverse flow region ends and reattachment begins near x/h = 6. After the

reattachment point, at x / h = 10, all the models predict a positive U across the expanded channel;

the NWRS and NNWRS models follow the data better than the elliptic-relaxation model does.

The predicted turbulent kinetic energy k is compared with the DNS data in Fig. 5.8. Note

that Jovic and Driver (1993) did not report the measured normal turbulent fluctuation Wrms, so the

measured kinetic energy k is not available. The mixing layer type structure in the flow separation
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regionbehind the stepsignificantenhancesthe turbulent production(Jovic and Driver 1993),

resultingin high kinetic energypeak. As flow movesto thedownstream,turbulencedecaysand

thepeakof thekinetic energydecreases.Comparedwith theDNSdata,theNNWRS andNWRS

modelsgive prettygoodpredictionsof k, although the NNWRS model slightly overpredicts the

peak of k at x / h = 6 and 10, and the NWRS model underestimates the peak at x / h = 4. The

elliptic-relaxation model underpredicts k at all three locations. The comparisons of turbulent

normal stresses Urms, Vrms, Wrms and shear stress uv at the same locations are shown in Fig. 5.9.

Overall, the elliptic-relaxation model given better predictions of turbulent stresses in the near wall

region than the NNWRS and NWRS models, but the NNWRS and NWRS models outperform the

elliptic-relaxation model in the outer region. The peak value of Urms is overestimated by the

NNWRS and NWRS models, whereas the peak value of Wrms is underpredicted by the elliptic-

relaxation model.

5.3 Three-Dimensional Flow in a Square Duct

5.3.1 Background Turbulent flow in a square duct is characterized by the existence of

secondary flow of the second kind (as classified by Prandtl) in the plane perpendicular to the

streamwise direction. This kind of secondary flow in a non-circular straight duct is created by

turbulent motion. Although relatively weak (2-3% of the streamwise bulk velocity), its effects on

wall shear stress distribution, heat transfer rates, or transport of passive tracers are quite significant

(Demuren 1990). Being of considerable engineering interests, turbulent flow in a straight non-

circular duct has been the subject of many experimental and numerical investigations (Demuren

and Rodi 1984). Systematic measurements of flow in a non-circular straight duct have been

carried out by Gessner's group (Po 1975; Lund 1977; Eppich 1982; Gessner and Emery 1981).

The farthest measured location in their experiments away from the entrance is 84 D h , where D h is

the hydraulic diameter of the duct. According to the measurements, flow at this location is already

fully developed. Similar experiments were also conducted in a duct with a length shorter than

84D h (Metling and Whitelaw 1976; Launder and Ying 1972). Although Brundett and Baines
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(1964) carriedout measurementsasfar as260Dh from the entrance, where the flow is fully

developed, the inaccurate method used to measure the turbulent stresses made their measurements

less reliable.

Direct numerical simulation provides an alternative approach to study the fully developed

square duct flow at low Reynolds numbers. Recently, Huser and Biringen (1993) and Gavrilakis

(1992) carried out direct numerical simulation for square duct flow at Reynolds number

Ret, = UbD h / 1) = 10,320 (U b is the bulk velocity in the streamwise direction) and Re b = 4,410,

respectively. Although the Reynolds numbers in the DNS are much lower than those in the

experiments mentioned above, it appears that the mechanisms driving the comer secondary flow at

disparate Reynolds numbers are similar. Huser and Biringen (1993) showed that the low-

Reynolds.-number effects are manifested in the reduction of the distance from the vortex centers to

the corner and the reduction of the secondary flow near the wall bisector compared to high-

Reynolds-number experiments. Gavrilakis (1992) also found out that viscous effects are quite

important in the transportation of mean vorticity in low-Reynolds-number flow, whereas they are

important only in the region very close to the comer in high-Reynolds-number flow (Demuren and

Rodi 1984).

The origin of the secondary motion can be identified through analyzing the streamwise

vorticity development along the duct. The mechanisms which cause streamwise vorticity to

develop in turbulent flow along a corner are responsible for the initiation of the secondary flow.

Following Prandtrs (1926) original idea on the secondary motion, Einstein and Li (1958) carried

out a rigorous analysis to show that the gradients of Reynolds stresses are the actual source of the

secondary motion. For a fully developed incompressible flow, the mean streamwise vorticity f_x

is governed by

--g - -(I j , (5-5)

where
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3V 3W

f x- & (5-6)

In (5-5), the terms on the left-hand side represent the convection of the streamwise mean vorticity

in the transverse plane; the first two terms on the right-hand side express the influence of the

turbulent stresses on the production or destruction of the streamwise vorticity; and the last term on

the right-hand side is the viscous-damping term. The two turbulent-stress terms are found to be

the dominant terms, and it is the difference between these two relatively large terms that drives the

weak secondary motion (Demuren and Rodi 1984). This implies that modeling the secondary

motion in a duct requires an anisotropic turbulence model.

Many attempts have been made to calculate the flow in a non-circular straight duct by using

algebraic models or Reynolds stress models. The algebraic models can be obtained from the

Reynolds stress models by neglecting the convection and diffusion terms. Most computations

were carried out by using algebraic turbulence models (Launder and Ying 1973; Gessner and

Emery 1981; Gosman and Rapley 1980; Naot and Rodi 1982; Demuren and Rodi 1984).

Although the algebraic models can give reasonable overall predictions of secondary motion by

tuning the model parameters, the models themselves do not correctly reflect the real physical

processes (Demuren and Rodi 1984). Among the few applications of the Reynolds stress models

to flow in a non-circular duct, wall functions were used to satisfy the boundary conditions (Naot et

al. 1974; Reece 1976; Launder and Li 1994). The correct modeling of near-wall turbulence is

crucial to the reproduction of the secondary flow in wall-bounded duct flow. Therefore, square

duct flow provides a severe case to test the correctness of turbulent modeling of the wall effects.

In addition, since the flow is bounded by multiple walls and has two inhomogeneous directions, it

is also an ideal case to show the advantages of the wall-independent NNWRS model.

5.3.2 Cases studied The high-Reynolds-number case (Re b =250,000) investigated by

Gessener's group in the laboratory and the low-Reynolds-number case (Re b = 10,320) studied by

Huser and Biringen (1993) using DNS are selected to test our turbulence models for square duct

flow. Through the continuous effort of Gessener's group, fairly complete experimental data are
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availablefor three-dimensionalturbulent flow in a squareduct at R% = 250,000. Thesedata

includemeanvelocitiesin streamwiseandtransversedirections,wall shearstress,andtheturbulent

stressesalongbothwall andcornerbisectorat streamwiselocationsx / D h = 8, 40 and 84. At

location x / D h = 84, the flow is fully developed (Gessener and Emery 1981). These reported data

can be found in Gessener et al. (1979, 1991, 1993) and Gessner and Emery (1981). Hereafter this

high-Reynolds-number case is referred to as Gessner and Emery's (1981) case. In Huser and

Biringen's (1993) case, the flow is fully developed, and detailed DNS data are available. These

two cases together will demonstrate the advantages of wall-indepent NNWRS model for flows

with multiple walls and should complement the turbulence model validations over a wide range of

Reynolds numbers for flow in developing region as well as in fully developed state.

5.3.3 Numericalprocedure and boundary conditions The coordinate system and

computational domain for a quarter of the square duct are shown in Fig. 5.10. Three-dimensional

parabolic marching scheme of Patankar and Spalding (1972) is adopted to solve the governing

equations. This numerical scheme assumes that the streamwise mean velocity is determined by the

averaged pressure in the plane perpendicular to the streamwise axis, and iterations are therefore

carried out in the transverse plane. At fixed streamwise location (x), the discretization procedure

is similar to that described in Section 4 for swirling flow, and a line-by-line iterative scheme is

used to solve the tridiagonal matrix in alternating directions. SIMPLEC algorithm (modified from

SIMPLE) is adopted to link the pressure field with the velocity field. Fig. 5.11 shows the grid

distribution of 91 × 91 in the lower left quadrant of the duct in the ( y, z)-plane. The grid points

are clustered near the walls and 91 × 91 is found to be fine enough for the cases studied. The

marching step size increases progressively from 0.004 D h at the entrance (x = 0) to 0.04 D h at

downstream location x / D h = 100.

The inlet (x = 0) conditions determine the development of the flow in the square duct

because the governing equations are of parabolic-type. At the inlet, the mean flow in the core

region is assumed to be uniform with turbulence intensity I = 0.35%. Near the walls the flow

field is obtained from the flat-plate boundary layer theory with relative boundary layer thickness
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/ a = 0.02 on the duct midplane (y = a), where S is the boundary layer thickness and a is the

length of the wall bisector (see Fig. 5.10). The secondary velocities V and W, and turbulent

m

shear stress vw are set to zero at the inlet. All the variables are specified such that their iso-

contours are parallel to the duct walls and have a square shape to give symmetric distributions

about the corner bisector. No outlet conditions are needed for this parabolic problem. Symmetry

conditions are used at the wall bisectors (y = a, z - a), namely

3(U, W, uu, vv, ww, uw, e)
=0 ,and V=uv=vw=0 ,at y=a , (5-7a)

O(U, V, uu, vv, ww, uv, e)

&

m

=0 ,and W=uw=vw=O ,at z=a , (5-7b)

and no-slip boundary conditions require all the variables be zero at the walls (y = a, z = a) except

for the dissipation rate, which is specified as

e=2v(°_@12 ,at y=0 ,
W

(5-8a)

= ,at z=0
L

(5-8b)

5.3.4 Results and discussion The model-data comparisons are presented first for the case of

Huser and Biringen (1993) for fully developed flow at low Reynolds number and then for the case

of Gessner and Emery (1981) for developing flow at high Reynolds number. Model predictions

for the low Reynolds number case show that the flow at x / D h = 84 already reaches the fully

developed state since no more change is observed further downstream. Therefore, the model

results at x / D h = 84 are used to compare with the DNS data given by Huser and Biringen (1993)

for the fully developed flow.

Fig. 5.12 displays the secondary flow velocity vectors predicted by the NNWRS model,

revealing two streamwise, counter-rotating, and symmetric (with respect to corner bisector)

vortices in the comer. The flow on the transverse plane moves towards the comer along the comer

bisector (y - z), and by virtue of mass continuity, it moves away from the corner along the walls
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(y = 0 andz = 0) and towards the center of the duct along the wall bisectors (y = a and z = a).

This predicted flow pattern is very similar to that shown in Huser and Biringen (1993), with the

centers of the vortices shifted slightly away from the comer. The vortex centers in Fig. 5.12 are

located at ( y ---0.25a, z -- 0. 55a ) and ( y -- 0.55a, z = 0. 25a ), whereas their counterparts predicted

by the DNS are located at (y = 0.2a, z = 0.4a) and (y ---0.4a, z -- 0.2a)

Fig. 5.13 shows the isotachs (lines of constant streamwise mean velocity in (y, z)-plane) of

U / U c (U c is the mean velocity at the centerline of the duct) predicted by the NNWRS model.

The isotachs are bent toward the comer with a milder curvature near the comer bisector compared

with those isotachs shown in Huser and Biringen (1993); the predicted isotachs close to the walls

are also flatter. Similar secondary flow pattern predicted by the NWRS model is observed (not

shown).

The comparison between the predicted normalized wall shear stress "cw / rw (rw is the

average value of "rw over the walls) and the DNS data along one wall is shown in Fig. 5.14. The

"rw / _w given by the NWRS model is much overpredicted near the comer, but agrees reasonably

well with the DNS data away from the comer. On the other hand, the _ / _, predicted by the

NNWRS model follows the DNS data quite well from the comer to the location of the first peak in

the DNS data; further away from the corner, the NNWRS model slightly overpredicts the wall

shear stress. The predicted mean streamwise velocity profiles U along the wall bisector (y = a)

are plotted in Fig. 5.15 and compared with the DNS data. Both models give very good predictions

of the streamwise mean velocity U.

In Fig. 5.16, the predicted secondary velocity V along the wall and corner bisector are

compared with the DNS data. Both models overestimate V along the wall bisector except in the

region near the center of the duct (Fig. 5.17a); the results given by the NNWRS model are closer

to the data compared with those predicted by the NWRS model. Along the comer bisector (Fig.

5.17b), although the NNWRS model follows the data near the comer and the center quite well, it

predicts a secondary velocity profile with a much smaller peak. On the other hand, the NWRS

model predicts a secondary velocity profile with a similar shape as shown by the DNS data, but the
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peakis overpredictedby theNWRS modeland its location is shifted toward the corner. The

distributionsof normalstressdifference(w2- v 2) along the wall bisector are shown in Fig. 5.17.

Compared with the DNS data, the NNWRS model gives a very good prediction of the normal

stress difference, whereas the NWRS model much overestimates the difference near the walls.

Fig. 5.18 shows the development of streamwise vortices in the lower left quadrant of the

duct predicted by the NNWRS model for the high-Reynolds-number (Re b = 250,000) case. The

comparisons of secondary flow patterns at locations x / D h = 8, 40 and 84 indicate that the

streamwise vortices in the developing flow are initially generated near the corner; as flow develops

along the straight duct, they move away from the corner and spread out in the cross section until

the flow becomes fully developed. At x / D h = 84, the NNWRS model predicts the vortex centers

are located at (y -- 0.25a, z -- 0. 60a) and ( y ---0.60a, z = 0. 25a), which are further away from the

comer compared with those predicted by the same model for the low-Reynolds-number flow (cf.

Fig. 5.18c with Fig. 5.12). Fig. 5.19 plots the predicted and measured isotachs of the streamwise

mean velocity U normalized by Uc. The model predictions at x/D h = 8 (Fig. 5.19a), showing

that the isotachs are bent toward the comer and are flat along the walls, are in very good agreement

with the data. At x / D h = 40 and 84, the predicted isotach contours are less distorted compared

with the measured ones (Fig. 5.19b and 5.19c).

The distributions of normalized wall shear stress "rw / _w at three streamwise locations

x/D h = 8, 40, and 84 are shown in Fig. 5.20. Unlike the low-Reynolds-number case, the

NWRS and NNWRS models give almost the same predictions of wall shear stress at all three

locations for the high-Reynolds-number case (cf. Fig. 5.20 with Fig. 5.14). The predictions

agree well with the measurements at x / D h = 84, although they are slightly overpredicted near the

wall bisector. The rather flat predicted wall shear stress profiles result from the almost parallel

distribution of isotach contours near the wall predicted by the models (Fig. 5.19).

The variation of predicted centerline mean velocity in the streamwise direction is plotted in

Fig. 5.21 and compared with the measurements. According to the experimental data, the mean

velocity along the centerline first increases to the peak value, and then decreases and levels off to
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anasymptoticvaluein thefully developedregion. Bothmodelresultsagreeverywell with thedata

in thedevelopingregion. In theshearinteractionregionnearx / D h = 40, the NWRS model gives

better predictions of Uc than the NNWRS model does. The NNWRS model predicts a shorter

developing region and a lower peak value of U c. As flow approaches to the fully developed state,

the centerline velocity is also predicted well by the NWRS model, whereas underpredicted by the

NNWRS model slightly. Fig. 5.22 shows the comparisons between the predicted and measured

streamwise mean velocity U normalized by the bulk mean velocity Ub along the wall and corner

bisector at locations x / D h - 8, 40 and 84. The predictions given by both models are identical and

in very good agreement with the data along both wall and comer bisector at all three locations.

Comparisons between predicted and measured secondary flow velocity profiles along the

wall and corner bisector at the same locations are shown in Fig. 5.23. Unlike the low-Reynolds-

number case, both models give almost identical predictions of the secondary mean velocity for the

high-Reynolds-number case (cf. Fig. 5.23 with Fig. 5.16). The secondary mean velocity is

underpredicted by the models along the wall bisector at x / D h - 40 and 84. Along the corner

bisector, the model-data agreement is good at x / D h = 40, but both models still underestimate V at

x / D h = 84. The underestimation of V in the fully developed region is also observed when the

secondary flow velocity is normalized by the local friction velocity uT, instead of the bulk velocity

Ub (Fig. 5.24).

The comparisons between predicted and measured turbulent stress and kinetic energy

distributions along the wall and corner bisector at three streamwise locations are shown in Figs.

5.25-5.29. The NNWRS model predicts slightly higher turbulent stresses and kinetic energy than

the NWRS model. Predicted turbulent stresses and kinetic energy along the wall bisector are in

pretty good agreement with the experimental data. Along the comer bisector, the predictions of

turbulent stresses and kinetic energy are generally overestimated. At x / Dh = 84, data and model

comparisons are also made for the normal stress difference (w 2 - v 2) at locations z / a = 0.1, 0.6

and 1.0. Difference in the predictions given by the NWRS and NNWRS models is quite large in

the inner layer, but diminishes away from the wall (y = 0). Compared with experimental data of
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Eppich (1982), the normal stressdifference is underestimatedby the models in the near-wall

region.

5.4 Concluding Remarks

In thissection,thewall-independentNNWRS modelhasbeenappliedto two turbulentflows

with complexgeometry:two-dimensionalflow overabackward-facingstepandthree-dimensional

flow in astraightsquareduct. Theperformanceof theNNWRSmodel is shownto beasgoodas

the wall-dependentNWRS model. The predictions of mean and turbulence flow fields in

backward-facingstepflow agreewell with theDNSandexperimentaldata.TheNNWRSmodelis

ableto reproducecomplexflow phenomenainducedby the presenceof the step,suchasflow

recirculation, reattachment,andboundary-layerredevelopmentto fully developedstate. The

comparisonof skin friction coefficientpredictedby thetwo modelsindicatesthattheovershooting

of theskin friction coefficientafterthereattachmentpoint prevalentin thosenear-wallReynolds

modelsusing wall normals(including the NWRS model) is not causedby the wall normals

adoptedin the models. Further investigation is neededto find out the root causefor this

overshootingbehaviorin Reynoldsstressmodeling. TheNNWRSmodelis alsoshownto beable

to capturethesecondarymotioninducedby turbulencefor low- andhigh-Reynolds-numberflow

in a squareduct. It predictsthat thevortexcentersarecloserto thecomer in the low-Reynolds-

numberflow than in high-Reynoldsnumberflow, which agreeswith the finding of Huser and

Biringen(1993). In high-Reynolds-numberflow, bothmodelsgive aboutthesamepredictionsof

the secondaryflow velocity, whereasin low-Reynolds-numberflow, theNWRS modelpredicts

strongersecondaryflow velocity alongthewall andcomerbisectorcomparedwith theNNWRS

model. Thelargerdifferencebetweenthemodelpredictionsfor low-Reynolds-numberflow seems

to supportthe findings of Gavrilakis (1992) that viscouseffectsaremore important in a low-

Reynolds-numbersquareductflow.

202



Uo
(Line of symmetry)

U(x, y) I
y, V 6h

/// f-//////////////////////////
(0,0) x,U

Fig. 5.1 Sketch of plane backward-facing step flow and coordinate system.

203



:f
QL.--

i ii,

I , , , , | . , , , I I I t i ] i i i i | i i i , |

O _ _0 _ W 4O JO

(,)

],_-

o

I _ [ I , ! * I A I a I J I I i I J

• T )0 It :10
z/b

Co)

204



8

6

4-

2
%

0

-2

-4

-6

-8

y -- _ _ _ .

,__ _ O_ 0........................

o Jovic & Driver (1993)
_, Le et al. ( i 993)

........... Durbin (1995)
- - - NWRS
-- NNWRS

i T I i I i , i I _ ' i [ i _ I

4 8 x 12 16 20
h

Fig. 5.4 Comparison between predicted and measured skin friction coefficient.

0.3--

0.25-

0.2.

0.15-
C

P

0.1

0.05

0

-0.05

_- -_o-_-__ _-_c7__-2

ss "_

_r, o Jovic & Driver (1993)
,_ ,' * Le et al. (1993)

-.....  UrW ,Rg(1995 

NNWRS

i f i I i I I ' f ' I f ' ' I

4 8 X__ 12 16 20
h

Fig. 5.5 Comparison between predicted and measured wall pressure coefficient.

205



30-

25

20

U+ 15

10

5

0

100

x/h= 10 ," ......

U ÷ = 2.51ny + + 5.4 ,'Q_ •
.,'o /

./. .i'° //
,,_ _,0 // o Jovic & Driver (1993)

+_ + / _-'_ /2 o Leetal.(1993)
U -y_/,;_..._... l_eu:bin (1995)

- __
] I I 11111[ [ I I I IIII I I I I I IIII I I [ I I _ I I I]

101 102 103 104

y+

(a)

U ÷

30-

25-

20-

15

10

x/h= 15

5

0

1oo

U + = 2.51ny ÷ + 5.4 "._. _

, _,,. /.'o //

i t'_"" .08 ///
-- / _.--_'" _'o Jovic&Driver(1993)

+ + /_.-:,:_-"-'-_ o Le et al. (1993)

U = y_'/._- .... .-. .... fi_bin (1995)

._ - - - NWRS
../ NNWRS

y÷

(b)

206



U ÷

30-

25-

20.

15.

10.

5.

0

10 o

x/h =19

.o .....

U += 2.51ny + + 5.4 .,,'_ _,i._--_
. .'_ i/

, _, 1" "O Y
. _.- z'a //

-'" _ ,'_'-"_ Jovic & Driver (1993)
"4" , Leet al. (1993)

U ÷ = ' ........ Durbin (1995)
NWRS

./o -- NNWRS

...... I';1 ...... 1';2 ...... i';3 ....... 1';4

y+

(c)

Fig. 5.6 Comparison between predicted and measured mean velocity profiles U + in wall

coordinate y+ at different downstream locations after the the reattachment point: (a) x / h = 10,

(b) x/h=15,and(c) x/h=19.

207



3

y/h

2

!

0
-0.2

x/h =4 6 I0
(

o Jovic & Driver (1993)
o Le et al. (1993) o

........ Durbin (1995)
- - - NWRS

-- NNWRS _ _
#"/S

, of° /

'-'-' _( _ _ ' T ' ' ' "_" ' ' _ I ' ' ' I ' ' ' l ' ' ' I ' ' ' I

0 0.2 0.4 0.6 0.8 I 1.2 1.4
U/U

O

Fig. 5.7 Comparison between predicted and measured mean velocity profiles in global coordinate
at different locations.

Y

x/h=4 6
4

3"513

2.5

",,,

1.5 ,..._ ,.._

>s0.5 .

0

10

o Le et al. (1993)
......... Durbin (1995)
.... NWRS
-- NNWRS

", _

A.._ r
i i , I

0 k 0 0.02
I

0.04

Fig. 5.8 Comparison between predicted and measured turbulent kinetic energy at different
locations.

208



x/h =4

2

y/h

1

o

6 10

_* o

i o Le et al.
(1993)

io ........... Durbin (1995)
o o _ _ _ NWRS

NNWRS
,_' ,.V° o°

"" ", O ', O

', o • '. o

• ,.0 ', ",

, , __, , _¢,_,, ,-_o4,%, ,
0.1 0"2u /U 0.3

rm$ o

o Jovic & Driver (1993)

I

0.4

(a)

2

y/h

1

x/h=4
4

6 10

:: o Jovi¢ & Driver (19 3)
/i o Le et al. (1993)
]:: ........... Durbin (1995)

io !o ° \! o ° -- NNWRS

' (20

0 0.05 0.2 0.250.1v /W 0.15
rms o

I

0.3

(b)

209



x/h=4
4

l
3

2

y/h

1

0

6 10

o Le et ai. (1993)
........... Durbin (1995)
- - - NWRS
-- NNWRS

, ,..r__v^._.-_ , , __.___ , , _,o;v _ ,
0 0 0.1w /U

rills O

I

0.2

(c)

x/h=4
4-

6 10

2

y/h

0

o Jovic & Driver (1993)
o Le et al. (1993)

........... Durbin (1995)
- - - NWRS
-- NNWRS

f

0.01 0.02

-_

[ _ f f i [

0.03 0.04

(d)

Fig. 5.9 Comparison between predicted and measured turbulent stresses at different locations: (a)

U,.ms, (b) V,.mx, (C) Wrmx, and (d) -uv .

210



(0, O, O)
z,W

(a)

y,V

aI a_
/

_y'
/-

CB /
/

WB

a

f

Z, W

(b)

Fig. 5.10 Sketch of computational domain for straight square duct: (a) overview, and (b) on
transverse plane.

211



1.2
,, ",.

I : ' ..?.....L_,-°°__°°°°?-_ ......?
,; 0

t. 0"8 !

0.4-1!/o

ti_ o Huser & Birngen (1993)
0.2-_b- •.......... NWRS

$/-

-- NNWRS
01 , , , i , , , i , , , i , , , i , , , i

0 0.2 0.4 z 0.6 0.8 1
a

Fig. 5.14 Comparison between predicted and DNS wall shear stress for fully developed square

duct flow at Re = 10,320.

1.5 m

u
u_

o Huser & Biringen (1993)
...... NWRS
-- NNWRS

0 '012' '0J.4 ' '016 ' 01.8 ' i
Y_
a

Fig. 5.15 Comparison between predicted and DNS axial mean velocity along wall bisector for for

fully developed square duct flow at Re = 10,320.

212



5_

4'

3.

-V--xlO_
Uh

2-

- - o Huser & Biringen (1993)
"" "" ....... NWRS

,' ", , -- NNWRS

jr _

i •

 ooo,. .,
0.2 0.4 0.6 0.8 ' 1

a

(a)

20-

16-

12-

-V'×I03
Ub

8-

4-

x
x

_o o

x
o ,,

"xo

0 ' ' ' L '' 9

0 0.2 0.4 y 0.6 0.8 I
a

o Huser & Biringen (1993)
...... NWRS
-- NNWRS

(b)
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221



V

U,

0,4--

0.3-

0.2-

0.1-

o Gessner & Emery (1981)
........... NWRS
-- NNWRS

O O
0 0

0

0 0.2 0.4 0.6 0.8 1
y__
a
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Fig. 5.25 Comparison between predicted and measured normal stress in axial direction along: (a)

wall bisector, and (b) comer bisector for developing square duct flow at Re = 250, 000.
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Fig. 5.26 Comparison between predicted and measured normal stress in vertical direction along:

(a) wall bisector, and (b) comer bisector for developing square duct flow at Re = 250,000.
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Fig. 5.27 Comparison between predicted and measured normal stress in transverse direction along

wall bisector for developing square duct flow at Re = 250, 000.
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Fig. 5.28 Comparison between predicted and measured turbulent kinetic energy along: (a) wall

bisector, and (b) comer bisector for developing square duct flow at Re = 250,000.
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Fig. 5.29 Comparison between predicted and measured turbulent shear stress along: (a) wall
bisector, and (b) comer bisector for developing square duct flow at Re = 250,000.
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6. CONCLUSIONS

In this study, a new near-wall Reynolds stress model (NNWRS) without wall normals is

developed based on the pressure-strain model of Speziale et al. (1991). With the aid of near-wall

asymptotic analysis and the results of direct numerical simulation, wall-independent near-wall

modifications are incorporated into the expression for the pressure-strain correlation, into the

relation for the dissipation rate tensor, and into the modeled dissipation rate equation. A damping

function is introduced to ensure that the near-wall modifications will not affect the flow field in the

region far away from the walls. The asymptotically correct NNWRS model is the first near-wall

Reynolds stress model without wall normals. For comparison, the formulation of the recent near-

wall Reynolds stress model (NWRS) with wall normals developed by So et al. (1994a) is also

presented. According to the asymptotic analysis, the NNWRS model gives more accurate

predictions of those Reynolds stress components uncorrelated with the wall normal direction than

the NWRS model, whereas the NWRS model gives more accurate predictions of those

components correlated with the wall normal direction. With no wall-dependent variables used in

the model and only one damping function, the NNWRS model is more general and flexible for

turbulent wall-bounded flows than the wall-dependent NWRS model, which requires two damping

functions for different Reynolds number range.

The new model is applied to a wide variety of flows to verify its applicability. These flows

range from relatively simple flows, such as fully developed channel/pipe flow, Couette flow, and

boundary-layer flow with zero pressure gradient, to complex flows with swirl and rotation, such

as swirling pipe flow, axially rotating pipe flow, and channel flow with spanwise rotation. The

advantages of using the new proposed model for flows with complex geometry are demonstrated

by flow over a backward-facing step and flow in a square duct. The performance of the model in

different type of flows is summarized as follows:

(1) The NNWRS model predicts reasonably well the mean and turbulent flow fields of simple

internal and external flows over a wide range of Reynolds numbers. The model is able to
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(2)

(3)

capture the log-law region with a correct von Karman constant. Reynolds number effects on

the mean flow and second-order statistics are reproduced well by the model. The main

deficiency in the model is that it predicts less degree of turbulence anisotropy in the near-wall

region compared with the NWRS model.

In flows with swirl and rotation, the flow complexity is caused by the streamline curvature,

centrifugal force, and Coriolis force. The performance of the NNWRS model seems to

depend on the relative importance of these factors. In swirling pipe flow, the NNWRS

model gives reasonable predictions for flow in no reverse flow region, whereas the model

predicts a much smaller reverse flow region than that observed in the experiment. In

developing flow along a pipe rotating about its axis, the NNWRS model is able to capture the

flow pattern subject to both destabilizing effect resulting from the mean circumferential shear

strain and stabilizing effect due to the centrifugal force. In the fully developed channel flow

with spanwise rotation, at low rotation rate, the model predictions agree with the data. But,

as the rotation rate increases, the model underestimates the Coriolis effect. The NWRS

model behaves similarly as the NNWRS model in these flows.

The advantages of using the NNWRS model for flows with complex geometry become more

evident when it is applied to two-dimensional flow over a backward-facing step and three-

dimensional flow in a straight square duct. The overall performance of the NNWRS model

is found to be as good as the wall-dependent NWRS model. The model predictions of mean

and turbulence flow fields in backward-facing step flow agree well with the experimental and

DNS data. The NNWRS model is able to reproduce complex flow phenomena induced by

the presence of the step, such as flow recirculation, reattachment, and boundary-layer

redevelopment to a fully developed state. The comparison between the predictions given by

the two models indicates that the overshooting of skin friction coefficient prevalent in near-

wall Reynolds stress models is not caused by the use of wall normals. The NNWRS model

is also able to capture the secondary motion induced by turbulence in low- and high-

Reynolds-number square duct flow. The difference in the model predictions of low- and
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high-Reynolds-numbersquareduct flow seemsto agreewith theDNS findingsby Gavrilakis

(1992)andHuserandBiringen(1993).

Overall,thepredictionsgivenby theNNWRS modelagreereasonablywell with available

datafrom experiments,directnumericalsimulation,or largeeddysimulationfor a wide rangeof

Reynoldsnumbers,swirl numbers,androtation numbers.Variouscomplicatedflow phenomena

areessentiallycapturedby themodel. Moreover,themodelperformanceisverycloseto thatof the

wall-dependentNWRSmodel. With furtherrefinement,thewall-independentNNWRS modelis

expectedto replaceexistingwall-dependentnear-wallReynoldsstressmodelsfor wall-bounded

turbulentflows soon. Modificationsof theformulationof thenear-wallcorrectionssothat the

NNWRS model can give more accuratepredictions of those Reynolds stresscomponents

correlatedwith thewall normaldirectionareexpectedto improvetheperformanceof themodel

significantly,whichwill bepursuedin thenearfuture.
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APPENDIX A

The Equations for the High-Reynolds-Number Models

Speziale et al.'s (1991) high-Reynolds-number pressure-strain correlation formula was

published in the following form

I'Iij :-(C,E+f;e)bij -Ff2E(bikbkj-lI-Ic_ij)+(f3-f;l[I/2)kSij

(A-I)

+ C4k(bikSjk + bikSjk -2 bmnSmn_ij l + C5k(bik Wjk + bjk Wik ).

The mean vorticity Wij is defined as

Wij = O)ij + emji_"_m , (A-2)

where (.oij is the anti-symmetric mean velocity gradient tensor, emj i is the permutation tensor and

_'2 m is the rotation rate vector of the non-inertial frame relative to an inertial frame. The definitions

of the other terms in (A- 1) are

bij = _k (Uiuj-2 k_ij) , (A-3a)

rI = bmnbmn , (A-3b)

I(cgU i _Uj) ,

Slj ='_ 0X s + O_Xi (A-3c)

V--OUj OSi]Pij = -luiuk _ + ujuk , (A-3d)
[ ,gxk OxkA

= 2Pii , (A-3e)

1 3U_ 3Uj

% =2 ( 0x: Oxi ) '
(A-3f)

and the coefficients are C1 =3.4, C2 =4.2, C3=0.8, C4 =1.25, C5 =0.4, C( =1.8, 6"3=1.3.

Comparing (A-1) with the LRR model, which can be written as,
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-[LRR _ij =-Cle-bij-al(Pij- fiaij)-fll(Dij- [afiij)- 2ylkSij , (A-4)

it can be noted that the first two terms in (A-l) are the return part and its nonlinear modification,

respectively. The mean vorticity caused by rotation is separated from the anti-symmetric mean

velocity gradient tensor and excluded from the transformation. Therefore, the terms need to be

transformed are

ij = (C3 -c_Hll2)kSij + C4k bikSjk + bikSj_ - bmnSrnn_ij (A-5)

+ Cs/¢(biecoj_+ bakcoi_,).

The SSG model (A-l) was developed for plane homogenous turbulence by Speziale et al.

(1991). Under this assumption the symmetric and anti-symmetric tensors Sij and (oij can be

written as

Sij = 0 ; coO= 0 ,

0 0

(A-6)

and the anisotropy tensor is of the form

[)ij = 12 b22 0

0 b33

(A-7)

Accordingly,

Hssc/j = (C 3 - C;III/2)k 0 +

0

C4k

2b12(.0 (b22 - b I 1)(.o 0 /+c'k(b_o-b_l)°' 2_"°'o oo,

b128 (bll + b22)S

(bll +b22)S 3b12 S

0 0

0

0

_4 b12S
3
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or

I-ISS° I Cll C12 0
ij = C12 C22 0

k o o c33

(A-8)

where

CIl =(2 C4 + 2C5)b12kS ,

C12 = [(C3 - C;I-II/2) + C4(bl, + b22)+ C5(b22-bll)]kS

C22 = -2 b12kS ,

C33 =_4 Ceb12k S ,
J

(A-9a)

(A-9b)

(A-9c)

(A-9d)

To determine the coefficients in the final form (A-9), consider a thin shear layer flow where

10U
S = o? - (A-10)

20y

On substitution of (A-10) and the anisotropy tensor definition (A-3a), (A-9) becomes

Cll= C4+C 5 _ o_y '

=(C4 C5+ c3-c3rI1/Z )--__u2 +C12 12 4 4

4 oay '

c4 + c5 _ c_ - c_n ''_ ];_au
12 4 4 _ 0y

'l' /c22= _ -jc4-c5 _ & ,

1 ,., -- 3U

C33 =---_(..4UV--_y

(A-1 la)

(A-I lb)

(A-1 lc)

(A-lld)

Similarly, last three terms in (A-4) can be written in the form
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rl SSO
ij = -al

4-- OU -_ o_U
-Tu -g- --g

-_ c)U 2 -- 9U- - UV

ay 3 ay

0 0

_0 k OU 0

Oy

k oU 0 0
as

0 0 0

0

0

2--3U

-_uv----_

-#1

"2--3U --g OU
--ttV-- - U

3 _ Oy

_-UgonU 4 -- OU- -l_V--

ay 3 o5,

0

0

2-- c)U

 uu-g

or

/c_

vISSG I clO

- -ij = 2

where

o 1
C22 0 ,

o cj_

2-- 3U

C'll =(20_ 1 --fll)_UV--_- ,

C'12 =[(#1---_)u-_ H-(al- _L)v_ - _w-2] 6)sO3y

, 2 3U

(A-12)

(A- 13a)

(A-13b)

(A-13c)

(A-13d)

By comparing (A-11) with (A-13), the following equations are obtained

1 1

2(2al -fl)=--_(-_C4-kC5 ) ,

2(2#1-al):2(lC4-C5 ) ,

(A- 14a)

(A-14b)
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+ill) =-_C4 , (A-14c)2(< 1

_1 ?'1 C4 t_ C5 + 1 ( C;I-I 1/2)- C3 - (A-14d)
2 12 4 4-

(A-14e)
4t J2 12 4

Y1 ___C____+4(c 3 _c31-ii/2) , (A-14f)
2 o 4"

Only three of the above equations are independent and undetermined coefficients,

are solved from them, which are

_1, _1' and ?'1,

al- C4 +C5'4 " fll - C4-C54 ; ?'1 - C43 2(1C3 - C3I-II/2) . (A-15)

Substituting C3 = 0.8, C, = 1.25, C5 = 0.4, C_ = 1.3 into (A-15), we have

a 1 =0.4125 • fll =0-2125 and ?'1 =0.01667+-_I-I1/2 (A-16)
' 2

Therefore, the transformed SSG model is

I_ISSG • - 1ij = -(Cle + CI P)bij + Cze(bikbkj - l"ISij) + Cs_rn(bikemkj + bjkemki)k

2 _aij)_fll(Oij_2_aij)_2(?'l +C;i-i1/2)kSi j- oq ( PiJ - -3 2

with a 1 =0.4125; fll =0.2125 and ?'1 =0.01667 and C1 =3.4, C2 =4.2, C 5 =0.4, C_ = 1.8.

(A-17)
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APPENDIX B

SUMMARY OF MODEL EQUATIONS

B.1 NNWRS Model

The Reynolds-stress transport equation for the NNWRS model can be written as

OUiUj _ C9 ( 3U-_j I+ T OUj OUi]Uk _x k _x k v--_x k J D_ +[--UiU k "-_Xk -- UjUk CgXk ,

- 2Y2k (UjUmeikm + UiUmejkm ) + rI O - 80 .

where the modeled terms are

= L ax, ax,)j'

I-l(i = -(C16 + C_ P)bij + C26( bikbkj - 3I-l_ij ) + C5_"_m(bikemk j + bjkemki )k

_ Otl(ei j _2 e_ij)- fll(Oij _2 e(_ij)- 2(_1 + C;rIl/2)kSiJ2

+ fw,ll-Iff •

w *- 1 _Z* 2 *IIij =(Cle +C1P)bij-C2e(bikbkj-_FlSij)+ (Pij- f'Sij)+ 2Y kSij

2 w *

60 = _ _ijE( 1 -- fw,l) + fwAeij + 60 ,

• ±[_( auiu_ UiUj 6_ _Xk]6ij = 2 L ax_ v-gUx_) k ax_ (v )

The dissipation rate equation is given by

o_e o3 ( o3e "] o_ k o36 613 62
Uk - 1)_1 + "z'-- (C e - uiuj _) + Cel -- Cezfe --

Ox k 3x k _, 3x k ) dXj 8 OX i k k

(B-l)

(B-2)

(B-3a)

(B-3b)

(B-4a)

(B-4b)

(B4c)

(B-5)
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B.2 NWRS Model

The Reynolds-stress transport equation for the NWRS model can be written as

03Ui"j- 03 l D_| __..03U_--03Uj 03Ui ]
03Xk _X k . 03Xkj+OiT+[-UiUkoAk-UjUk03xk

Uk

- 2f2/, (UjUmeik m + UiUmejk m )k + 1-Iij - Eij .

The modeled terms are given by

D_ = _ % --lUiU l -- + UjU l + UkU l .ax, -SUx Ox,)j

1-Iij = --(fl E + c; e)bij + C2E( bikbkj - l I-I_ij ) + Cs_-2m ( bikemk j + bjkemki )k

-- al (Ptj -2 _ll_ij)-_l(Dij -3 ef_ij)-2(_/1-I-C;1-[l/2)kSiJ2

+ iw,in_ +rip.

where

Hij = (CIE + C1P)bij - C2e(bikbkj - 1-I_q) + a (Pij - + 2), kSij ,

1[ 03 ( c)ff--iuUk_nn 03 ( 03-ff--juk_ 1+1 03 I1)_--lnkntnin srl_=-7 _ V-_x_ )_ '+--iu--in_n'03x,t, 03x,) 1 -g x.t ,,xo;

2 w

eij =-3S(iE(1- fw,l)+ fw,lEi j ,

w E uiuj + UiUknknj + UjUknkni + ninjUkUlnknl

eiJ = k 1 + 3UkUtnkn t / 2k

The dissipation rate equation is given by

ae <9(&) a k-- & ) £ f,_ e_
Uk -- 1).w--i + .w.-( Ce-uiu j +Gel Ce2 + _

03Xk 03Xk t dX k J dXj E 03Xi k -k" '

where

(B-6)

(B-7)

(B-8a)

(B-8b)

(B-8c)

(B-9a)

(B-9b)

(B-10a)
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_=fw,2 -L-_P+M k N ,

-g = e- 2 vk / y z ,

_=_-2_(a_/o_) 2 ,

Other tensors and vectors appearing in the NWRS and NNWRS models are given by

F-- avj ave1
Pij = -lUiUk -- + ujuk --I ,L axk axkJ

P = 2P_i,

bij =-_k (U--i_-2 kaij) ,

11= bm.bmn ,

1 .SUi 8Uj
si,=UgT_j+-aT.) ,

exj 7;Tx,j '

_=(o, 1, o) ,

0, if any two of i, j, k are the same
eij_ = 1, if ijk is an even permutation of 123

-1, if ijk is an odd permutation of 123

(B-10b)

(B-10c)

(B-lOd)

(B-1 la)

(B-I lb)

(B-1 lc)

(b-lid)

(B-1 le)

(B-1 If)

(B-1 lh)

(B-1 li)
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B.3 Model Constants and Damping Functions

The model constants and damping functions are listed in the table below.

Constants/Functions NNWRS NWRS

C, 3.4 3.4

C2 4.2 4.2

c; 1.8 1.8

C*s 1.3 1.3

az 0.4125 0.4125

flj 0.2125 0.2125

)'1 0.01667 0.01667

o_" -0.32 -0.29

O.072 O. 065
7"

C, 0.11 0.11

C_ I 1.5 1.5

C, 2 1.9 1.83

C, 3 2.95

C5 0.4 0.4

C_ 0.12 0.12

L 2.25

M 0.5

N O.57

fe 1 - (2 / 9)e -(Re'/6)_

f_ I e-(R,,/150) 2 e-(A R,,/60)_' e-(R_,/200)2

fw2
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where

k 2

Re t = __
1)6

(B-12)

A = 1 - (9 / 2)(bobij - 2bob_kbki) (B-13)
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APPENDIX C

SUMMARY OF GOVERNING EQUATIONS

C.1 Fully-Developed Channel Flows

C. 1.1 Mean flow equation

3 2U ÷ 3uv--+ 1
0=--- _-

8y +2 c_y ÷ Re_

C. 1.2 NNWRS modeled equations

O: i + Cs-_V j--_y+ -_ 2 Cs T-yuv - 2u-v +3y+ 3y +

{4 . 2 C7(1 - f_l)b,,}-_v + o_U +-C,e+(l- fw,)b, + -_(a,- fw,O_ )--_fl, + ay +

( l I'I)--2(1--fwl)E+--fwl_ -_++C2g+(1-fwl) bll 2+b122-7

20y+ t Oy + J k + Oy+_.Oy+JJ '

O= l + 3Cs-_V )--_y+ O-CiE+(1- fwl)b22

_{2__(as_fw,a*)_4 -C7(1 f.t)b22}-_ +CgU+-_fl'- c_y +

+Cze+(1-fwl)(bzzZ+blzZ-lI1)-2(1-fwl)e+-fWlek--TTff+

(c-i)

(C-2)

(C-3)
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O= I+C s S+ ) Oy ÷ -Cse+(1-fwi)b.33

-j_,_ )+7,_,-c;(1-i_,>_, ay+

_ 8.+ ---_+

(c-4)

3v-5+

ey _ _.,.s;vv ) ey--_,-CsTu,,+Oy +

+ b "_-_+au--._*+,6,,-z÷au-_+
-Csc (1- f_,) n +(as- f_sog sv ay + Oy ÷

+cT(s_ f_,)b,_+ au+ ( " CT,1-U,)k + OU+ay+ r,-fw, r + 2 ay +

+C 2 8 + (1- fwl)(bll b12 + b12 b22 ) - fwl-_uv

2L_+t,_+) k+ ay+t,#+Oj

(c-5)

a-_(( -k+-_ae+_ s+--+au+ e+f'+o: )-aT+j- c=,yuV y+
2

+c_3p-t, ay+ (C-6)
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C. 1.3 NWRS modeled equations

_ k -5+)c_u __ k+--÷
O= l+t_s--_v +ZCs-_UV c?y +

-C,e+(1- fw,)b,, + -_(o_,- fw,ot )--_, +CT(1- fw,)b H uv 5_

+C_e+(1- f_,)(b,," +b,/-117)

u--T+ e+_2(l_fw,)e+-f_ k ÷ + 3v-W /2
(C-7)

=-_-y+_.3 3Cs g+ ) cgy+ -

_{2(Or, - L,,a. )__,4 _ c7(I-f./)be2}u-v+ °_U+o3y+

7+ :--_(I-A,):
-4f.,_ k÷ + 3v_.5+/2

(C-8)

+[(O= 1+C s e+ ) ay + ) C,e+(1-fw,)b3,

}__+ OU+2 _fw,Or ) 2 C;(l-f,,,,)b_,uv- -F(,_, "+-F:,- -g-:y+

+C2e+(1- f,_,)(b,J-31-I )

-.-_+

w e+ 2(l_fw,)_.+
-L, ÷+S+/2 --5

(C-9)
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+
_"7 + auv_ k+-+aT _ -s+au +

2Cs e÷ ay ÷ +C_Tuv -vOy ÷ 3y +

-- _ --+ 3U +-c,:(l-:w,>,,+(<-:.,_')v'+or++e,u'
Oy + 3y +

+CT(1- f_,)b,_uv +OU+ Y* OU+
ay+ r, - f.,, + FIll2 k + ay+

+c::(1- :.,)(b,,b,,+b,,e,,)- 2:_,
m+

uv

k + + 3v 2+/2
_+ (c- 1o)

O y kk 7= )-gTZy+) - C'' 1,:--Tuv 3 y÷

( E+--+OU+ M_+ N g+e+)
+ f w2 L--uv_+ -aTy++ --7- (C-11)

C.1.4 Boundary conditions

At y+ = 0 (wall)

w=o, k+=o, -2+=o,

: =2(a____+l '
kay )

At y+ = Re, (centerline)

3U + 9k +

_-0,=0, 3y + -

_=0

3y +

+ m. I.=0, uv =0

a7 + a7 + aT_+
--_77-y+= 0, -'_y+ = O, e y + -0,

--+

UV = 0

(C-12)

(C-13)
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C.2 Fully-Developed Pipe Flow

C. 2.1 Mean flow equation

13
_--P

r ÷ 0 r + r ÷ Or + Re_
(C-14)

C. 2.2 NNWRS modeled equations

IO= r + l + Cs --_ v )-_i-r+ + 2r+ Cs 77 UV+ O-_v+Or ÷

, 2 CT(1-f_s)b H uv Or +-CIE+(1- f_,)b,I-t - (a,- f_za )--7_11

1Fl)-2 (1- fw,)e+- fwl Ek----d-_++C28+(1- fwl)(bll2+hi22--_

(c-15)

O--

1 0 I ( 3Csk/--_-Tv--g+']O-_+l- 2--2-(-_ + -- 22v--_ +r+Or + r + 1+ ) Or+ J r+2! v -w2+)-t 3 r+ 2

2 Cs k+-_ + 07 + 4 k + "--=+t--7 + ---7+
r e + Or + r+2CsTwa tv -w )

2 - f,,,.,jd) 4 }--+OU +-C,e+(1- fw,)bz, - -_(of, --_fls-CS(1- fw,)b22 uv Or +

l rI)-2(1-fwi)e+-fwl_--4-+-_++C__+(1- f _)(b=_+b,:_-_

I1 0 Ir + Ov-5+_12 r + Or + Or+ Ir+O,+/lk + r + 0r + 0r +
(C-16)
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1 0
O-

r÷ vOr ÷I I -k+ -_+ "___+) -_ r+2r+( l + Cs__7 1 0-_+ -- 2v2 +

2 k+7+aTS+ 4 k+--,-_+ ) 2 a: k+_+,-7+ ))
---7+

_--Tw2 (V -"_++-= Cs --- Cs - w _ - w
r e + o3r+ t-r+---T e , r + oGr+_Cs-_ w I v

t2 C;(1-f_,)b33 uv ar +-CiE+(1- fw1)b35 - (_,- fw,a*)+G_, -

1 2 e + 7-ff+

+C2 e+ (1- f wl)(b332 --_H)--_(1- f wl)e+ - f w1-_w

k + r + Or + Or +
(C-17)

0._--

r + cgr + r + I+2Cs--_v )_-_r Cs-_UV

--+
oqv2+ 2 UV

Or + 3 r +2

1Cs_+ UV _+ 2 Cs_+ UV+-7+ -- OU +--+ -- w" -v 2+-- C,e+(1- f.,)b,2
r Or + r +2 Or +

+(a I _ .C5 + o3U+- j_la )v c9r +

--v+ OU ÷

--+ fl, u" aqr+
--+C;(1-f_z)b,a _+OU+

Or +

_(). _ f.,:y'+@17,/_)k+ °3U___+ - e+(l_ f.i)(b,b,2+bi2822), Oy + +L)

-fw,l-_UV - r+ 8r + ar + )
u-v+ 1 o3 (r+Oqk+_]

k+ r+Or+t Or+)]
(C-18)

- -Uuv -- c,2O= r+ l+Ce-_ )-_-r +) Cel Or + _-c

2

c+"a_[_7]+Ce3"_ ar +
(C-19)
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C. 2.3 NWRS modeled equations

O= r + l+Cs-_-yv )_+ zr t.s--_uv Or+ Or +

-C_g+(l-fw,)bt,+ ot,-f.,ot )--_,+C,( -f.,)b H uv Or +

+C2:(1-A,)(b,,2 +b,/-l rI)

_:_-:+ _+ __(_ - l-A,): ,
k + + 3v 2+/2

(C-20)

o=---- + _-- --- v2 -7
r +o3r + 03r+ r +2 +-3_r +2

2_+ k+--7+o3-_2+ 4 k+----2+(--7+--+)r Cs -_v o3r + r- +'c'Tw V __2

. t -+ o3U +2 fwzOt)-4 _C;(l_fw,)b22 uv-c,e+(/-fw,)b2_- -5(a,- -j_, o3r+

+C2e+(1- fw,)(b,22 +b,S-3 FI)

4 -'T+ E+ 2(_ l-:_,):
-- fwlV k + + 3v 2+/2 3

(C-21)

0 / O3+( - k+-;+'_o3w-2") -- w ) 3r+ 2=_--_-r+ [ r+(/+ Cs_-v" )_ +-_2 (v 2.---'_` ,2 v_.

+TCsTV o3r+ _---Cs_--_-yw Iv -w 4r+ Cs--_w 2r +2 e _ o3r + (v - w

+ b+ 2 -fwlfX )+ -Cl(1-fwl)b,juv o3r+-C,E (1- fwl) ,j- -_(Ot,
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- _+ 2-f"W2+k+ + 3-_+/2 (l- fw')e+ '
(C-22)

k.-7+)Ouv_ +.._+_+a-7+
O= r + +2Cse ÷ ) Or + +r t.s77UV Or +

2 uv
+2

3r

1 k÷--÷?-_ ÷- C$_blV
r e ÷ c?r÷

2 ... k + --+---7+ -7+ OU +

r+2_s --UVe+ w - v Or+---C, °_+(1-fwl)bl2

*' --2 + °_U + + fl t u---i+ °_U + C ; (1 f w, )b ,2u-7 _ U ++(a,- fw,a )v Or+ Or--7+ - Or+

-(r,-fw, X'+C-_I-I'/2) k+ OU+

-2 f ., -u-v÷
_+

k÷+37÷/2
(C-23)

k+_)Oe+'_ e+_+OU + C_2 k ÷
O= r + l + C_ --eTv )-_r+ )- C_,-_Tuv o_r----7- --

e"+ __+ o_ U ++f_2 L-_Tuv _r +__ + M ff_7 _ N g+e÷ _
k + )

(C-24)

C. 2.4 Boundary conditions

At r ÷ = Re_ (wall)

__ -- -- __+

U+=O, k+=O, u2+=O, 1)2+=0, W2+_--O, UV =0,

(C-25)

At r ÷ = 0 (centerline)
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OU + Ok+ =o Ou_+ Ov_÷
Or + =0, Or + , Or + Or +

-0,
c_ w-"7+
n_O,

--+

UV = O_

(C-26)
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C.3 Fully-Developed Couette Flow

C.3.1 Mean flow equation

o_2U + 69u-v +
0-

o_y +2 0y +

C.3.2 NNWRS modeled equations

The equations are the same as those given for the fully-developed channel flow.

C. 3.3 NWRS modeled equations

The equations are the same as those given for the fully-developed channel flow.

C.3.4 Boundary conditions

At y+ = 0 (fixed wall)

U+=O, k÷=O, u2+=O, v2+=O, w2÷=O, uv =0

At y+ = 2 Re r (moving wall)

__ _ -- __+

U + + k +=Uspecified, =0, u2+=O, V2+=O, w2+=O, uv =0

(C-27)

(C-28)

(C-29)
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C.4 Incompressible Boundary-Layer Flow

C. 4. I Mean flow equations

3U 3V

3x v-_y=O ,
(C-30a)

_x Oy 3y +_y[ -_-yJ c?y
(C-30b)

C.4.2 NNWRS modeled equations

U ou2 + V 6_u2

3x 3y 3(( ..,k--g) Ou--g k--3"_']Oy V+Cs-e v )--_y + 2Cs euv--_y l- 2-_-_y

_el E(1 fwl)bl,+(3(O_l - • 2 }-_OS- fw'°_ )--3fl' +C;(1-fwl)bll Oy

+C2E(1-fwl)(bl12+b122-31-II-2(1-fwl)E-fwlkU ''_

1 09 U 2 0_

5-g _ _ ay _ (C-31)

Oy-Oy V+JCs-_V )w)-Cif.(1-fwl)b22

• }V_,gU
- at :ill -Cl (1-fwl)b22

c)y

2 (1- fwl)e- fwl e-'v-'-ff+C2 8(l- fwl)(b222 + ba22 -1Fl)--3 k

1 a v23(Ok)
(C-32)

o_x + Oy = v+C se J Oy )-
ClS(1 -fwl)b33
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- _zl Oy- + 7ill )b33

_lri)_2 (l_ fwl)e_ fwi e__w----_+C 2 8(1- fwl)Cb332 3 k

l[a¢ a_' w-__¢ a_]
(C-33)

--ff-_x+ --_y- I)+2_$ 7 j--o-_-y +C S e Oy )

_--_olU +(al . ,_qo_U . ,, -_OU

( " ,_g * + C3 [-[1/2 k 03U
+Cl(1- fwl)bl2"u-v'-_y - 7_- fw_r -_- Oy

E--
+c2e(1- Z_,)(b,,b,_+_2 b_)- Zw,-u_

k

-_ _ _-g-) _ _

va_+va__ a I( c k_7:_a_] _-avOx ay Oy v+ e e )3yj-Cel-£UV_y

C.4.3 NWRS modeled equations

U 0-_ - VC7-'_:0--_--¢¢19 "" k-'z_°_u--g k-ff-v°_'ff'vl 2-_-_y
ax + as ay_,t +CsTV )-_y +2Cs e as )-

_Cl E(I fwl)bll.l_(3(OEl * 2 }-_o3U-- -- fwla )--7 fll+C;(1-fwl)bll c_y

fw'l)(b?l + b?2 -3 I-I)+C2E(1-

(C-34)

(C-35)
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-fwl --_ 2- _-(1-:.,)_
k+3v 2/2

(C-36)

Ox +V-_y - 3y v+3Cs e. JOy j-Cle(1-fwl)b22

Z_l_ )--_,-C;(l-Zw,

+Ge(l- f w,_)(b_2+ b_2-1rI)

v_ _}(-- e- 1-fwl)e ,
-4fwl k +3v 2/2

(C-37)

--ff-x--x+ o3y 3y_\ +t_S eV )--_-y ) -C'(1- fw')b33

{_to,-_w,o"/+_,,_-_:_,-_,)_3}__y
1

+C2E(1 - fwl)(b23 - _ l-I)

w 2 2

-- e--_(1-fwl)e ,-fwl k + 3v 2 ] 2
(C-38)

[(_uv___+__1 _uv_s_+ _-_v_V_l
O y _-y -3 e cgy )

_-_ ,)._w_u . ,_ 3u . ,, _ 3u
oy -Cl'_(l- fwl)bl2 +(°q-Jwla )v .--_y *plu OY

+C;(1
- fwl)blzUV-_y -_,Yl- fwly 2 ) o3y

+CzE(1 - fwl )(bl lbl 2 + b12b22) - 2fwl
UV

m

k+3v 2/2
(C-39)
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- v+c_- c_i-.v--
c_x Oy o_y k Oy

_e, Le__-_OU+MgZ_N
-Ce2-'k -+ fw2 k Oy k

(C-40)
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C.5

by,

Levy-Lees Transformation for Boundary-Layer Flows

The body-oriented physical coordinates (x,y) and transformed coordinates (_,r/) are related

d_ __ ,j -p_(r o + y)J dy
=peuel.ter2, dx and dr/=

(C-41)

where ro is the body radius, e stands for the freestream value and j=O, 1 for plane and

axisymmetric flow, respectively. Equivalent to these expressions are the following:

X -- _ j n --

_ peu, r,, t( P "]4-

_(x)=I-Pette]2er'_JdXo and r/(x,y)---_j_-_)ray
(C-42)

where t = r / ro is the transverse curvature. By using the chain-rule of calculus we can relate the

(C-43a)

(C-43b)

derivatives of the two coordinate systems:

"_X y :peuej'_eF° l-_)r[ -1- _X y-'_ _ '

(6) I -PegerJtJ (-P )( 03 )

The dependent variables are transformed according to the following relations:

fi
F(_,r/)=__

U e
,oOr t-'V(_, 7"1)= Lfiel.tZr2o j F + 2_

k = _ _(_, 7"/)- , (C-44)
K({,r/)=fi---r; l_(_,r/) 2_o9 " 2_

where the expression for V is extracted from the continuity equation assuming a stream-function

exists. The equations governing the mean flow after the transformation are then given by,

2=c?F o3V
g _-_ +'ff-_ + F = 0 ,

(C-45)

2_F +V t2JL(l+#r) +fi(F2-®-l)=O (C-46)
or/

For the k - e model the equations are transformed to,
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(8 +Sw)
4 -0 ,

L£C

2¢F-@_-+aq a_L k _,)aqJ

(C-47)

8 t2j L- ( °lF ,_z Ce2f z 8'
+ Z=0

^ ^ ^2j

pel.t,r,, K

where,

A2-_ - 2-_p, K 2 A 2 (2_')'

80, u'_,' e_, /1, = c_L , z = u: a _. _
= _ 1_le(fl 2 L( I + 0)2 8 r-eUe]._,e o

The dimensionless parameters introduced are given by,

p. U.I_ ,A 2j+z ' U. P.

ro r° _,-11"
A #,

w- f¢ 8-
p.l.z ,A 2i p.l.t,A 2j

(C-48)

E (C-49)

(C-50a)

(C-50b)

(C-50c)

The quantities,

f- f, # _ = , (c-51)® = ___=_I L = and # 2{dfi,

T, ' P'-,P, fi, d_

are the dimensionless temperature, density/viscosity and pressure gradient terms, respectively.

The first two terms are introduced from the transformation and are zero and one, respectively, for

isothermal, incompressible flows. The last term in (C-51) vanishes for flows with zero pressure

gradient. The parameter A is a reference length and is set to 1 with no loss in generality. Similar

transformations are also applied to the modeled transport equations of the near-wall Reynolds-

stress models.
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